Advertisement

Microbial Loads and Removal Efficiency Under Varying Flows

  • Rebecca Stott
  • Katharina Tondera
  • Godecke-Tobias Blecken
  • Christiane Schreiber
Chapter
Part of the SpringerBriefs in Water Science and Technology book series (BRIEFSWATER)

Abstract

A variety of ecotechnologies have shown promising yet variable results in reducing faecal microbial contaminants under challenging operational conditions. But relatively limited work has been conducted to investigate and understand faecal microbe removal in these systems under highly fluctuating hydraulic and contaminant loading. In most instances, ecotechnology-based systems such as sedimentation ponds, constructed wetlands and bioretention filters have proved effective for treating episodic discharges and demonstrated performance resilience removing faecal microbial contaminants with modest to good efficiency particularly where inflow concentrations are high. However, microbial removal may depend greatly on the type of microorganism, treatment system design and operational factors. Design characteristics such as type of filter material and depth, presence of a submerged zone, type of vegetation and operational conditions such as inflow concentration, and antecedent dry periods in combination with temperature changes can all affect the removal of faecal microbes. Factors influencing survival, fate and behaviour of retained faecal microbes are still poorly understood. These knowledge gaps need addressing in order to fully evaluate microbial removal from fluctuating contaminated flows and more accurately interpret faecal indicator bacteria-based water quality and potential health risks associated with discharge from these ecotechnology-based systems.

References

  1. Birch GF, Matthai C, Fazeli MS, Suh JY (2004) Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 24(2):459–466CrossRefGoogle Scholar
  2. Brownell MJ, Harwood VJ, Kurz RC, McQuaig SM, Lukasik J, Scott TM (2007) Confirmation of putative stormwater impact on water quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations. Water Res 41(16):3747–3757CrossRefGoogle Scholar
  3. Chandrasena GI, Delectic A, Ellerton J, McCarthy DT (2012) Evaluating Escherichia coli removal performance in stormwater biofilters: a laboratory scale study. Water Sci Technol 66(5):1132–1138CrossRefGoogle Scholar
  4. Chandrasena GI, Deletic A, McCarthy DT (2014a) Survival of Escherichia coli in stormwater biofilters. Environ Sci Pollut Res 21(8):5391–5401CrossRefGoogle Scholar
  5. Chandrasena GI, Pham T, Payne EG, Deletic A, McCarthy DT (2014b) E. coli removal in laboratory scale stormwater biofilters: influence of vegetation and submerged zone. J Hydrol 519:814–822CrossRefGoogle Scholar
  6. Chandrasena GI, Deletic A, McCarthy DT (2016) Biofiltration for stormwater harvesting. Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. J Hydrol 537:248–259CrossRefGoogle Scholar
  7. Characklis GW, Mackenzie JD, Simmons ODIII, Likirdopoulos CA, Krometis LAH, Sobsey MD (2005) Microbial partitioning to settleable solids in stormwater. Water Res 39(9):1773–1782CrossRefGoogle Scholar
  8. Chhetri RK, Flagstad R, Munch ES, Hørning C, Berner J, Kolte-Olsen A, Thornberg D, Andersen HR (2015) Full scale evaluation of combined sewerover-flows disinfection using performic acid in a sea-outfall pipe. Chem Eng J 270:133–139CrossRefGoogle Scholar
  9. Christoffels E, Mertens FM, Kistemann T, Scheiber C (2014) Retention of pharmaceutical residues and microorganisms of the Altendorf retention soil filter. Water Sci Technol 70(9):1503–1509CrossRefGoogle Scholar
  10. Clary J, Leisenring M, Jeray J (2010) International Stormwater Best management Practices (BMP) database. Pollutant category summary: fecal indicator bacteria. www.bmpdatabase.org. Accessed 27 July 2017
  11. Clary J, Jones J, Leisenring M, Hobson P, Strecker E (2017) International Stormwater BMP database: 2016 Summary statistics. www.bmpdatabase.org. Accessed 1 Aug 2017
  12. Collins R, Elliott S, Adams R (2005) Overland flow delivery of faecal bacteria to a headwater pastoral stream. J Appl Microbiolog 99:126–132CrossRefGoogle Scholar
  13. Corapciogliu Y, Haridas A (1984) Transport and fate of microorganisms in porous media: a theoretical investigation. J Hydrol 72:149–169CrossRefGoogle Scholar
  14. Davies CM, Bavor HJ (2000) The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems. J Appl Microbiol 89:349–360CrossRefGoogle Scholar
  15. Davies-Colley RJ, Donnison AM, Speed DJ, Ross CM, Nagels JW (1999) Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: interactions of environmental factors with sunlight. Water Res 33:1220–1230CrossRefGoogle Scholar
  16. Decamp O, Warren A, Sanchez R (1999) The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators. Water Sci and Technol 40:91–98Google Scholar
  17. Department of Internal Affairs (DIA) (2016) Government inquiry into the harvelock North Drinking Water outbreak. Part 1—overview, key findings and highlights. https://www.dia.govt.nz/Government-Inquiry-into-Havelock-North-Drinking-Water-Report-1. Accessed 8 Nov 2017
  18. Diaper EWJ, Glover GE (1971) Microstraining of combined sewer overflows. J Water Pollut Control Fed 43(10):2101–2113Google Scholar
  19. Dickenson JA, Sansalone JJ (2012) Distribution and disinfection of bacterial loadings associated with particulate matter fractions transported in urban wet weather flows. Water Res 46(20):6704–6714CrossRefGoogle Scholar
  20. Donovan E, Unice K, Roberts JD, Harris M, Finley B (2008) Risk of gastrointestinal disease associated within exposure to pathogens in the water of the lower passaic river. Appl Environ Microbiol 74(4):994–1003CrossRefGoogle Scholar
  21. Dufour A, Bartram J, Bos R, Gannon V (eds) (2012) Animal waste, water quality and human health. USEPA and IWA Publishing, World Health OrganisationGoogle Scholar
  22. ESR (2017) Havelock North 2016 waterborne outbreak epidemiology Report. Prepared for Hawkes Bay District Health Board (16 pages). https://www.dia.govt.nz/diawebsite.nsf/Files/Havelock-North-Core-Bundle2/$file/CB148.pdf. Accessed 28 June 2017
  23. Fenlon DR, Ogden ID, Vinten A, Svoboda I (2000) The fate of Escherichia coli and E. coli 0157 in cattle slurry after application to land. J Appl Microbiol Symp Suppl 88:149S–156SCrossRefGoogle Scholar
  24. Fleisher JM, Kay D, Wyer MD, Godfree A (1998) Estimates of the severity of illnesses associated with bathing in marine recreational waterscontaminated with domestic sewage. Int J Epidemiol 27:722–726CrossRefGoogle Scholar
  25. Franke C, Rechenburg A, Baumanns S, Willkomm M, Christoffels E, Exner M, Kistemann T (2009) The emission potential of different land use patterns for the occurrence of coliphages in surface water. Int J Hyg Envir Health 212:338–345CrossRefGoogle Scholar
  26. Galfi H, Haapala J, Nordqvist K, Westerlund C, Blecken GT, Marsalek J, Viklander M (2016) Inter-event and intra-event variations of indicator bacteria concentrations in the storm weser system of the city of Östersund, Sweden. J Environ Eng 142(7):06016003CrossRefGoogle Scholar
  27. Gargiulo G, Bradford S, Šimůnek J, Ustohal P, Vereecken H, Klumpp E (2007) Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein. J Contam Hydrol 92(3–4):255–273CrossRefGoogle Scholar
  28. Gerba CP, Thurston JA, Galabi JA, Watt PM, Karpiscak MM (1999) Optimisation of artificial wetland design for removal of indicator microorganisms and pathogenic protozoa. Wat Sci Technol 40:363–368Google Scholar
  29. Haile RW, Witte JS, Gold M, Cressey R, McGee C, Millikan RC, Glasser A, Harawa N, Ervin C, Harmon P, Harper J, Dermand J, Alamillo J, Barrett K, Nides M, Wang GY (1999) The health effects of swimming in ocean water contaminated by storm drain runoff. Epidemiology 10:355–363CrossRefGoogle Scholar
  30. Havelaar AH, Vanolphen M, Drost YC (1993) F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh-water. Appl Environ Microbiol 59:2956–2962Google Scholar
  31. Hathaway JM, Hunt WF (2011) Evaluation of first flush for indicator bacteria and total suspended solids in urban stormwater runoff. Water Air Soil Pollution 217:135–147CrossRefGoogle Scholar
  32. Hathaway JM, Hunt WF, Jadlocki S (2009) Indicator bacteria removal in storm-water best management practices in Charlotte, North Carolina. J Environ Eng 135(12):1275–1285CrossRefGoogle Scholar
  33. Hathaway JM, Krometis LH, Hunt WF (2014) Exploring seasonality in Escherichia coli and fecal coliform ratios in urban watersheds. J. Irrig and Drainage Eng 140(3)Google Scholar
  34. Headley T, Nivala J, Kassa K, Olsson L, Wallace S, Brix H, van Afferden M, Müller R (2013) Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: effects of design and plants. Ecol Eng 61:564–574CrossRefGoogle Scholar
  35. Jeng H, England A, Bradford H (2005) Indicator organisms associated with stormwater suspended particles and estuarine sediment. J Environ Sci Health 40(4):779–791CrossRefGoogle Scholar
  36. Kadlec RH, Wallace SD (2009) Treatment Wetlands. CRC Press, Boca RatonGoogle Scholar
  37. Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837CrossRefGoogle Scholar
  38. Kistemann T, Christoffels E, Koch C, Claßen T, Rechenburg A, Exner M, (2004) Untersuchungen zur mikrobiellen Fließgewässerbelastung durch Regenentlastungen der Mischkanalisation am Beispiel der Swist (Swist II) (Investigation of the impact of combined sewage overflows resulting from heavy rainfall on microbiological surface water quality, taking as an example the river Swistbach (‘Swist II’)). Final report, http://www.ihph.de/publichealthprojekteabgeschlossen.php, Bonn/Bergheim (in German)
  39. Kistemann T, Christoffels E, Franke C, Rechenburg A, Willkomm M, Exner M (2007) Mikrobielle Belastung der Fließgewässer aus diffusen Eintragspfaden am Beispiel der Swist (Swist III) (Microbiological contamination of surface waters resulting from diffuse pollution, taking as an example the river Swist (‘‘Swist III”)). Final report, http://www.ihph.de/publichealthprojekteabgeschlossen.php, Bonn/Bergheim (in German)
  40. Kistemann T, Rind E, Rechenburg A, Koch C, Claßen T, Herbst S, Wienand I, Exner M (2008) A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems. Int J Hyg Environ Health 211:534–545CrossRefGoogle Scholar
  41. Krometis L-AH, Characklis GW, Simmons OD III, Mackenzie JD, Likirdopulos CA, Sobsey MD (2007) Intra-storm variability in microbial partitioning and microbial loading rates. Water Res 41:506–516CrossRefGoogle Scholar
  42. Li YL, Deletic A, Alcazar L, Bratieres K, Fletcher TD, McCarthy DT (2012) Removal of Clostridium perfringens, Escherichia coli and F-RNA-coliphages by stormwater biofilters. Ecol Eng 49:137–145CrossRefGoogle Scholar
  43. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front in Microbiol 5:258Google Scholar
  44. McCarthy DT (2009) A traditional first flush assessment of E coli in urban stormwater runoff. Water Sci Technol 60(11):2749–2757CrossRefGoogle Scholar
  45. McCarthy DT, Hathaway JM, Hunt WF, Deletic A (2012) Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Res 46:6661–6667CrossRefGoogle Scholar
  46. McDowell RW, Muirhead R, Monaghan RM (2006) Nutrient, sediment and bacterial losses in overland flow from pasture and cropping soils following cattle dung deposition. Commun Soil Sci Plant Anal 37(1–2):93–108CrossRefGoogle Scholar
  47. McBride GB, Stott R, Miller W, Bambic D, Wuertz S (2013) Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res 47(14):5282–5297CrossRefGoogle Scholar
  48. Merkel W, Schaule G (2010) Bewertung der Leistungsfähigkeit von vier Retentionsbodenfiltern hinsichtlich der Rückhaltung hygienisch relevanter Mikroorganismen. Rating the efficiency of four retention soil filters regarding the retention of hygienically relevant microorganisms. Final report, https://www.lanuv.nrw.de/uploads/tx_mmkresearchprojects/Abschlussbericht_Retentionsbodenfilter_unterzeichnet.pdf, Mülheim a.d. Ruhr (in German)
  49. Mertens FM, Schreiber C, Heinkel S-B, Kistemann T, Christoffels E (2014) Überprüfung und Bewertung von Maßnahmen zur Reduzierung der chemisch-physikalischen und hygienisch-mikrobiologischen Belastungen von Fließgewässern am Beispiel der Swist (Swist IV). Examination and evaluation of measures to reduce physicochemical and hygienic-microbiological contamination of surface watercourses on the example of Swist (‘‘Swist IV’’). Final report, http://www.ihph.de/publichealthprojekteabgeschlossen.php. Bergheim/Bonn (in German)
  50. Mertens FM, Brunsch AF, Wunderlich-Pfeiffer J, Christoffels E, Kistemann T, Schreiber C (2017) Mikroschadstoffe im eingeleiteten Wasser aus einem Regenwasserkanal im Einzugsgebiet der Swist. Micro pollutants in discharged water from a separate sewer rain basin within the catchment area of river Swist. KW Korrespondenz Wasserwirtschaft 10(3):145–150 (in German)Google Scholar
  51. Nguyen MT, Jasper JT, Boehm AB, Nelson KL (2015) Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates. Water Res 83:282–292CrossRefGoogle Scholar
  52. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiolog 43:93–100Google Scholar
  53. Orb R (2012) Rückhalt hygienerelevanter Bakterien in mischwasserbeschickten Retentionsbodenfiltern – Konstruktive Hinweise. (Retention of bacteria with relevance to hygiene in retention soil filters fed with combined sewer discharge—advice on construction). Dissertation, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028727, University Karlsruhe (in German)
  54. Pan X, Jones KD (2012) Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database. Water Sci Technol 65(6):1076–1080CrossRefGoogle Scholar
  55. Qureshi A, Dutka B (1979) Microbiological studies on the quality of urban stormwater runoff in southern Ontario, Canada. Water Res 13(10):977–985CrossRefGoogle Scholar
  56. Rambags F, Tanner CC, Stott R, Schipper LA (2012) Fecal bacteria, bacteriophage and nutrient reductions in a full-scale denitrifying woodchip bioreactor. J Environ Qual 45(3):847–854CrossRefGoogle Scholar
  57. Rechenburg A, Koch C, Claßen T, Kistemann T (2006) Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water. Wat Sci Technol 54(3):95–99CrossRefGoogle Scholar
  58. Rivera F, Warren A, Ramirez E, Decamp O, Bonilla P, Gallegos E, Calderon A, Sanchez JT (1995) Removal of pathogens from wastewaters by the Root Zone Method (RZM). Wat Sci Technol 32:211–218Google Scholar
  59. Schares G, Pantchev N, Barutzki D, Heydorn A, Bauer C, Conraths F (2005) Oocysts of Neospora caninum, Hammondia heydorni, Toxoplasma gondii and Hammondia hammondi in faeces collected from dogs in Germany. Int J Parasitology 35(14):1525–1537CrossRefGoogle Scholar
  60. Scheurer M, Heß Lüddeke F, Sacher F, Güde H, Löffler H, Gallert C (2015) Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overlow. Environ Sci: Proc Impacts 17:186–196Google Scholar
  61. Schreiber C, Rechenburg A, Rind E, Kistemann T (2015) The impact of land use on microbial surface water pollution. Int J Hyg Environ Health 218(2):181–187CrossRefGoogle Scholar
  62. Schreiber C, Rechenburg A, Koch C, Christoffels E, Claßen T, Willkomm M, Mertens FM, Brunsch AF, Herbst S, Rind E, Kistemann T (2016) Two decades of system-based hygienic-microbiological research in Swist river catchment (Germany). Environ Earth Sci 75(21):1393CrossRefGoogle Scholar
  63. Selvakumar A, Borst M (2006) Variation of microorganism concentration in urban stormwater runoff with land use and season. J Water Health 4(1):109–124Google Scholar
  64. Stevik TK, Aa K, Ausland G, Hanssen JF (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38:1355–1367CrossRefGoogle Scholar
  65. Stott R, Jenkins R, Bahgat M, Shalaby I (1999) Capacity of constructed wetlands to remove parasite eggs from wastewaters in Egypt. Water Sci and Technol 40:117–123Google Scholar
  66. Stott R, May E, Ramirez E, Warren A (2003) Predation of Cryptosporidium oocysts by protozoa and rotifers: implications for water quality and public health. Water Sci Technol 47:77–83Google Scholar
  67. Stott R, Tanner CC (2005) Influence of biofilm on removal of surrogate faecal microbes in a constructed wetland and maturation pond. Water Sci Technol 51(9):315–322Google Scholar
  68. Stott R, Tanner CC, Sukias JPS, Headley TR, Yates CR (2012) Evaluation of wetland and denitrifying bioreactor ecotechnologies for marae and kainga. New Zealand Land treatment collective annual conference (Technical Session 33), Tauranga, 28–30 MarGoogle Scholar
  69. Stott R, Sukias J, McKergow LA, Davies-Colley R, Tanner C (2014a) Unexpected net export of faecal indicator bacteria from a Typha wetland intercepting agricultural drainage. In Proceedings of 11th international phytotechnologies conference, Heraklion, Crete, Greece, 30 Sept–3 Oct 2014Google Scholar
  70. Stott R, Park JBK, Tanner CC, Sukias JPS (2014b) Microbial disinfection resilience of wetlands and denitrifying bioreactor ecotechnologies during shock loading. In Proceedings of 14th internatioanl wetland systems for water pollution control, Shanghai, China 12–16 Oct 2014Google Scholar
  71. Sukias J, Stott R, Kreutz M (2007) Buffering capacity of a constructed wetland during an accidental dairy farm pollution event. In 2nd international symposium on Wetland Pollutant Dynamics and Control, WETPOL. Mander, Ü. University of Tartu, Tartu, Estonia I:288–290Google Scholar
  72. Sukias JPS, Stott R, McKergow LA, Tanner CC (2011) Faecal microbe dynamics in a wetland system treating agricultural drainage waters from grazed dairy pastures during storm flow. Proceedings of the 15th IWA international conference on diffuse pollution and eutrophication, Rotorua, New Zealand. 19–23 Sept 2011Google Scholar
  73. Tanner CC, Sukias JPS (2011) Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures. J Environ Qual 40(2):620–633CrossRefGoogle Scholar
  74. Tondera K, Koenen S, Pinnekamp J (2013) Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters. Water Sci Technol 68(5):1004–1012CrossRefGoogle Scholar
  75. Tondera K, Klaer K, Gebhardt J, Wingender J, Koch C, Horstkott M, Strathmann M, Jurzik L, Hamza IA, Pinnekamp J (2015) Reducing pathogens in combined sewer overflows using ozonation or UV irradiation. Int J Hyg Environ Health 218:731–741CrossRefGoogle Scholar
  76. Tondera K, Klaer K, Koch C, Hamza IA, Pinnekamp J (2016) Reducing pathogens in combined sewer overflows using performic acid. Int J Hyg Environ Health 219:700–708CrossRefGoogle Scholar
  77. Vinten AJA, Douglas JT, Lewis DR, Aitken MN, Fenlon DR (2004) Relative risk of surface water pollution by E. coli derived from faeces of grazing animals compared to slurry application. Soil Use Manag 20:13–22CrossRefGoogle Scholar
  78. Waldhoff A (2008) Hygienisierung von Mischwasser in Retentionsbodenfiltern (RBF) (Sanitation of combined water in retention soil filters). Dissertation, https://www.uni-kassel.de/upress/online/frei/978-3-89958-610-7.volltext.frei.pdf. Kassel (in German)
  79. Walters E, Graml M, Behle C, Müller E, Horn H (2014) Influence of particle association and suspended solids on UV inactivation of faecal indicator bacteria in an urban river. Water Air Soil Pollut 225:1822–1830CrossRefGoogle Scholar
  80. Wilcock RJ, Monaghan RM, Quinn JM, Srinivasan MS, Houlbrooke DJ, Duncan MJ, Wright-Stow AE, Scarsbrook MR (2013) Trends in water quality of five dairy farming streams in response to adoption of best practice and benefits of long-term monitoring at the catchment scale. NZ J Mar Freshwat Res 64:401–412CrossRefGoogle Scholar
  81. Zhang L, Seagren EA, Davis AP, Karns JS (2012) Effects of temperature on bacterial transport and destruction in bioretention media: field and laboratory evaluations. Water Environ Res 84:485–496CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Rebecca Stott
    • 1
  • Katharina Tondera
    • 2
    • 3
  • Godecke-Tobias Blecken
    • 4
  • Christiane Schreiber
    • 5
  1. 1.Aquatic Pollution GroupNational Institute of Water and Atmospheric ResearchHamiltonNew Zealand
  2. 2.Stormwater Research GroupUniversity of the Sunshine CoastMaroochydoreAustralia
  3. 3.Institute of Environmental EngineeringRWTH Aachen UniversityAachenGermany
  4. 4.Urban Water EngineeringLuleå University of TechnologyLuleåSweden
  5. 5.GeoHealth Centre, Institute for Hygiene & Public HealthUniversity Hospital, University of BonnBonnGermany

Personalised recommendations