Detecting Changes in Time Sequences with the Competitive Detector

  • Leszek J. ChmielewskiEmail author
  • Arkadiusz Orłowski
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 125)


The concept of the competitive edge detector is revisited and extended. In the case of application to 1D signals it can be denoted as the detector of changes. In the detector two approximators are used working one at the ‘past’ and one at the ‘future’ side of the considered data point. The difference of their outputs makes it possible to find the change of the value and the derivative of the signal. The new features introduced consist in performing robust analysis and in adding the option to use a quadratic function as an approximator. Weighted voting of elemental subsets is used with weights related to the significance of a subset for the result. Weak fuzzification is used to increase the robustness. Results of change detection on test data as well as some real-life economic data are encouraging.


Change detector Competitive Robust Fuzzy Weighted 


  1. 1.
    Basseville, M.: Statistical methods for change detection. In: H. Unbehauen (ed.) Control Systems, Robotics and Automation. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, vol. XIV. Eolss Publishers, Paris, France (2002).
  2. 2.
    Basu, M.: Gaussian-based edge-detection methods-a survey. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 32(3), 252–260 (2002).
  3. 3.
    Bhardwaj, S., Mittal, A.: A survey on various edge detector techniques. Procedia Technol. 4, 220–226 (2012).
  4. 4.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge, MA, London (1987)Google Scholar
  5. 5.
    Chmielewski, L.: The concept of step and roof edge detector derived from a competitive filter. EPSILON ARG Report (1994)Google Scholar
  6. 6.
    Chmielewski, L.: The concept of a competitive step and roof edge detector. Mach. Graphics Vis. 5(1–2), 147–156 (1996)Google Scholar
  7. 7.
    Chmielewski, L.: Failure of the 2D version of the step and roof edge detector derived from a competitive filter. Report of the Division of Optical and Computer Methods in Mechanics, IFTR PAS (1997)Google Scholar
  8. 8.
    Chmielewski, L., Skłodowski, M., Cudny, W., Nieniewski, M., Kuriański, A., Michalski, B.: Fringe image enhancing in the light wavelength stepping method. Mach. Graphics Vis. 3(3), 543–578 (1994)Google Scholar
  9. 9.
    Chmielewski, L.J.: Fuzzy histograms, weak fuzzification and accumulation of periodic quantities. Application in two accumulation-based image processing methods. Pattern Anal. Appl. 9(2–3), 189–210 (2006).
  10. 10.
    Chmielewski, L.J.: Evidence accumulation methods in digital image analysis. Corrected edition (in Polish). Akademicka Oficyna Wydawnicza EXIT Andrzej Lang, Warsaw (2015).
  11. 11.
    Chmielewski, L.J., Orłowski, A.: Detecting changes with the robust competitive detector. In: Proceedings 8th Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2016. Lecture Notes in Computer Science. Springer, Faro, Portugal (2017) (Submitted for review)Google Scholar
  12. 12.
    Davis, L.: A survey of edge detection techniques. Comp. Graph. Image Proc. 4, 248–270 (1975).
  13. 13.
    Frejlichowski, D., Forczmański, P., et al.: SmartMonitor: An approach to simple, intelligent and affordable visual surveillance system. In: Bolc, L., et al. (ed.) Computer Vision and Graphics: Proceedings International Conference ICCVG 2012. Lecture Notes in Computer Science, vol. 7594, pp. 726–734. Springer, Heidelberg, Warsaw, Poland (2012).
  14. 14.
    Furmańczyk, K., Jaworski, S.: Large parametric change-point detection by a v-box control chart. Sequ. Anal. 35(2), 254–264 (2016).
  15. 15.
    Gordon, L., Pollak, M.: An efficient sequential nonparametric scheme for detecting a change of distribution. Ann. Statist. 22(2), 763–804 (1994).
  16. 16.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 34(3), 334–352 (2004).
  17. 17.
    Jaworski, S., Furmańczyk, K.: On the choice of parameters of change-point detection with application to stock exchange data. Quant. Methods Econ. XII(1), 87–96 (2011)Google Scholar
  18. 18.
    Kuriański, A., Nieniewski, M.: A model of the MRF with three observation sources for obtaining the masks of moving objects. In: Borgefors, G. (ed.) Proceedings 9th Scandinavian Conference on Image Analysis, vol. 2, pp. 931–940. IAPR, Uppsala (1995)Google Scholar
  19. 19.
    Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP) 3(1), 1–11 (2009)Google Scholar
  20. 20.
    Maître, H.: Un panorama de la transformation de Hough. Traitement du Signal 2(4), 305–317 (1985)MathSciNetGoogle Scholar
  21. 21.
    Narendra, V.G., Hareesh, K.S.: Study and comparison of various image edge detection techniques used in quality inspection and evaluation of agricultural and food products by computer vision. Int. J. Agric. Biol. Eng. 4(2), 83 (2011).
  22. 22.
    Niedźwiecki, M., Sethares, W.: New filtering algorithms based on the concept of competitive smoothing. In: Proceedings 23rd International Symposium on Stochastic Systems and Their Applications, pp. 129–132. Osaka (1991)Google Scholar
  23. 23.
    Niedźwiecki, M., Suchomski, P.: On a new class of edge-preserving filters for noise rejection from images. Mach. Graphics Vis. 1–2(3), 385–392 (1994)zbMATHGoogle Scholar
  24. 24.
    Pajdla, T., Hlaváč, V.: Surface discontinuities in range images. In: 5th International Conference Computer Vision, pp. 524–528. IEEE Computer Society Press, Berlin (1993).
  25. 25.
    Peli, T., Malah, D.: A study of edge detection algorithms. Comput. Graphics Image Process. 20(1), 1–21 (1982).
  26. 26.
    Polunchenko, A.S., Tartakovsky, A.G.: State-of-the-art in sequential change-point detection. Method. Comput. Appl. Probab. 14(3), 649–684 (2012).
  27. 27.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005).
  28. 28.
    Räty, T.D.: Survey on contemporary remote surveillance systems for public safety. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 40(5), 493–515 (2010).
  29. 29.
    Scheffer, M., Bascompte, J., Brock, W.A., et al.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
  30. 30.
    Shiryaev, A.N.: On optimum methods in quickest detection problems. Theory Probab. Appl. 8(1), 22–46 (1963).
  31. 31.
    Strauss, O.: Use the fuzzy Hough transform towards reduction of the precision-uncertainty duality. Pattern Recognit. 32, 1911–1922 (1999)CrossRefGoogle Scholar
  32. 32.
    Tartakovsky, A., Nikiforov, I., Basseville, M.: Sequential analysis: hypothesis testing and changepoint detection. In: Monographs on Statistics and Applied Probability. CRC Press, Chapman & Hall/CRC (2012)Google Scholar
  33. 33.
    Veeravalli, V.V., Banerjee, T.: Quickest change detection. (2012). arXiv:1210.5552
  34. 34.
    Venot, A., Golmard, J., Lebruchec, J., et al.: Digital methods for change detection in medical images. In: Deconink, F. (ed.) Information Processing in Medical Imaging. Martinus Nijhoff Publishers, Dodrecht, The Netherlands (1984)Google Scholar
  35. 35.
    WGPW—Warszwska Giełda Papierów Wartościowych (Warsaw Stock Exchange) (2016). Accessed 15 Nov 2016
  36. 36.
    Ziou, D., Tabbone, S.: Edge detection techniques—An overview. Pattern Recognit. Image Anal. 8(4), 537–559 (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Applied Informatics and Mathematics – WZIMWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations