Advertisement

From Zero to Hero: A Process Mining Tutorial

  • Andrea Janes
  • Fabrizio Maria MaggiEmail author
  • Andrea Marrella
  • Marco Montali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10611)

Abstract

Process mining is an emerging area that synergically combines model-based and data-oriented analysis techniques to obtain useful insights on how business processes are executed within an organization. This tutorial aims at providing an introduction to the key analysis techniques in process mining that allow decision makers to discover process models from data, compare expected and actual behaviors, and enrich models with key information about the actual process executions. In addition, the tutorial will present concrete tools and will provide practical skills for applying process mining in a variety of application domains, including the one of software development.

References

  1. 1.
    van der Aalst, W., et al.: Process mining manifesto. In: Proceedings of BPM International Workshops, vol. 99, pp. 169–194 (2012)Google Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  3. 3.
    Astromskis, S., Janes, A., Mairegger, M.: A process mining approach to measure how users interact with software: an industrial case study. In: ICSSP 2015 (2015)Google Scholar
  4. 4.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support, pp. 444–454 (2005)Google Scholar
  5. 5.
    van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. In: Proceedings of EMOI - INTEROP, vol. 160. CEUR-WS.org (2005)Google Scholar
  6. 6.
    Gunther, C.W.: XES standard definition version 1.0. Technical report, Fluxicon Process Laboratories. http://www.xes-standard.org
  7. 7.
    Gunther, C.W., Rozinat, A.: Disco: Discover your processes. In: Proceedings of the Demo Track of BPM, vol. 940, pp. 40–44 (2012)Google Scholar
  8. 8.
    IEEE Computational Intelligence Society: IEEE standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams. IEEE Std. 1849–2016, p. i-50 (2016)Google Scholar
  9. 9.
    Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., van der Aalst, W.M.P.: Process mining can be applied to software tool. In: Proceedings of the ESEM 2014. ACM (2014)Google Scholar
  10. 10.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_5CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrea Janes
    • 1
  • Fabrizio Maria Maggi
    • 2
    Email author
  • Andrea Marrella
    • 3
  • Marco Montali
    • 1
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.University of TartuTartuEstonia
  3. 3.Sapienza UniversityRomeItaly

Personalised recommendations