Mining Goal Refinement Patterns: Distilling Know-How from Data

  • Metta Santiputri
  • Novarun Deb
  • Muhammad Asjad Khan
  • Aditya GhoseEmail author
  • Hoa Dam
  • Nabendu Chaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)


Goal models play an important role by providing a hierarchic representation of stakeholder intent, and by providing a representation of lower-level subgoals that must be achieved to enable the achievement of higher-level goals. A goal model can be viewed as a composition of a number of goal refinement patterns that relate parent goals to subgoals. In this paper, we offer a means for mining these patterns from enterprise event logs and a technique to leverage vector representations of words and phrases to compose these patterns to obtain complete goal models. The resulting machinery can be quiote powerful in its ability to mine know-how or constitutive norms. We offer an empirical evaluation using both real-life and synthetic datasets.


Goal model mining Goal refinement Know-how 


  1. 1.
    Abbasghorbani, S., Tavoli, R.: Survey on sequential pattern mining algorithms. In: 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 1153–1164 (2015)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefGoogle Scholar
  3. 3.
    Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms, counts-as conditionals, institutions, deadlines and violations. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS, vol. 5357, pp. 86–97. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89674-6_12CrossRefGoogle Scholar
  4. 4.
    Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an agent-oriented software development methodology. Auton. Agent. Multi-Agent Syst. 8(3), 203–236 (2004)CrossRefGoogle Scholar
  5. 5.
    Chaudhari, M., Mehta, C.: Extension of prefix span approach with GRC constraints for sequential pattern mining. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 2496–2498 (2016)Google Scholar
  6. 6.
    Chopra, S., Ghose, A., Meyer, T.: Non-prioritized ranked belief change. J. Philos. Logic 32(4), 417–443 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification of non-functional requirements with application to early aspects. In: 14th IEEE International Conference on Requirements Engineering, pp. 39–48. IEEE (2006)Google Scholar
  8. 8.
    Darimont, R., Delor, E., Massonet, P., van Lamsweerde, A.: GRAIL/KAOS: an environment for goal-driven requirements engineering. In: Proceedings of the 19th International Conference on Software Engineering, pp. 612–613. ACM (1997)Google Scholar
  9. 9.
    Dasgupta, A., Ghose, A.K.: Implementing reactive BDI agents with user-given constraints and objectives. Int. J. Agent-Oriented Softw. Eng. 4(2), 141–154 (2010)CrossRefGoogle Scholar
  10. 10.
    Garcia, J.E., Paiva, A.C.: Maintaining requirements using web usage data. In: International Conference on ENTERprise Information Systems/International Conference on Project MANagement/International Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN /HCist. Procedia Comput. Sci. 100, 626–633 (2016)CrossRefGoogle Scholar
  11. 11.
    Ghose, A., Goebel, R.: Belief states as default theories: studies in non-prioritized belief change. In: ECAI, vol. 98, pp. 8–12 (1998)Google Scholar
  12. 12.
    Ghose, A., Koliadis, G., Chueng, A.: Rapid business process discovery (R-BPD). In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 391–406. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75563-0_27CrossRefGoogle Scholar
  13. 13.
    Ghose, A., Santiputri, M., Saraswati, A., Dam, H.K.: Data-driven requirements modeling: Some initial results with i\(^*\). In: Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM), pp. 55–64 (2014)Google Scholar
  14. 14.
    Hassani, M., Lu, Y., Wischnewsky, J., Seidl, T.: A geometric approach for mining sequential patterns in interval-based data streams. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 2128–2135 (2016)Google Scholar
  15. 15.
    Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from event streams using sequential pattern mining. In: IEEE Symposium Series on Computational Intelligence, pp. 1366–1373 (2015)Google Scholar
  16. 16.
    Jin, X., Donze, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 34(11), 1704–1717 (2015)CrossRefGoogle Scholar
  17. 17.
    Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon: a learning-based approach to deal with uncertainty in contextual requirements at run time. Inf. Softw. Technol. 70, 85–99 (2016). ElsevierCrossRefGoogle Scholar
  18. 18.
    Meyer, T., Ghose, A., Chopra, S.: Social choice, merging, and elections. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS, vol. 2143, pp. 466–477. Springer, Heidelberg (2001). doi: 10.1007/3-540-44652-4_41CrossRefzbMATHGoogle Scholar
  19. 19.
    Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging operations. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, p. 620. Springer, Heidelberg (2002). doi: 10.1007/3-540-45683-X_88CrossRefGoogle Scholar
  20. 20.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  21. 21.
    Patel, R., Chaudhari, T.: A review on sequential pattern mining using pattern growth approach. In: International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1424–1427 (2016)Google Scholar
  22. 22.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37–52. Springer, Cham (2015). doi: 10.1007/978-3-319-19237-6_3CrossRefGoogle Scholar
  23. 23.
    Sohrabi, M.K., Ghods, V.: CUSE: a novel cube-based approach for sequential pattern mining. In: 4th International Symposium on Computational and Business Intelligence (ISCBI), pp. 186–190 (2016)Google Scholar
  24. 24.
    Uragaki, K., Hosaka, T., Arahori, Y., Kushima, M.: Sequential pattern mining on electronic medical records with handling time intervals and the efficacy of medicines. In: IEEE Symposium on Computers and Communication (ISCC), pp. 20–25 (2016)Google Scholar
  25. 25.
    Yu, E.S.: Towards modelling and reasoning support for early-phase requirements engineering. In: Proceedings of the Third IEEE International Symposium on Requirements Engineering, pp. 226–235. IEEE (1997)Google Scholar
  26. 26.
    Zawawy, H., Mankovskii, S., Kontogiannis, K., Mylopoulos, J.: Mining software logs for goal-driven root cause analysis. In: The Art and Science of Analyzing Software Data, pp. 519–554 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Metta Santiputri
    • 1
  • Novarun Deb
    • 2
  • Muhammad Asjad Khan
    • 3
  • Aditya Ghose
    • 3
    Email author
  • Hoa Dam
    • 3
  • Nabendu Chaki
    • 2
  1. 1.Department of InformaticsState Polytechnic of BatamBatamIndonesia
  2. 2.Department of Computer Science and EngineeringUniversity of CalcuttaKolkataIndia
  3. 3.Decision Systems Lab, School of Computing and ITUniversity of WollongongWollongongAustralia

Personalised recommendations