Advertisement

Towards Rearchitecting Meta-Models into Multi-level Models

  • Fernando Macías
  • Esther Guerra
  • Juan de Lara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)

Abstract

Meta-models play a pivotal role in Model-Driven Engineering, as they are used to define the structure of instance models one level below. However, in some scenarios, organizing meta-models and their instances in multi-level models spanning more than two levels yields simpler solutions. This fact has triggered the proposal of different multi-level modelling tools and approaches, although each one of them supports small variations of the multi-level concepts.

In order to benefit from multi-level technology, existing meta-models and their instances could be migrated manually, but this is error prone, costly, and requires expertise for choosing the most appropriate tool and approach. Hence, we propose an automated migration process. This way, starting from a meta-model annotated with multi-level “smells”, our approach creates a neutral multi-level representation, and recommends the most appropriate tool according to the required multi-level features. We present an initial prototype, and a preliminary evaluation on the basis of meta-models developed by third parties.

Notes

Acknowledgements

Work supported by the Spanish MINECO (TIN2014-52129-R) and the R&D programme of the Madrid Region (S2013/ICE-3006).

References

  1. 1.
    Atkinson, C., Gerbig, R., Fritzsche, M.: A multi-level approach to modeling language extension in the enterprise systems domain. Inf. Syst. 54, 289–307 (2015)CrossRefGoogle Scholar
  2. 2.
    Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 266–275. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19440-5_16CrossRefGoogle Scholar
  3. 3.
    Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. SoSyM 7(3), 345–359 (2008)Google Scholar
  4. 4.
    Clark, T., Sammut, P., Willans, J.S.: Super-languages: developing languages and applications with XMF, 2nd edn., CoRR, abs/1506.03363 (2015)Google Scholar
  5. 5.
    de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13953-6_1CrossRefGoogle Scholar
  6. 6.
    de Lara, J., Guerra, E., Sánchez Cuadrado, J.: When and how to use multi-level modelling. ACM Trans. Softw. Eng. Methodol. 24(2), 12 (2014)CrossRefGoogle Scholar
  7. 7.
    Frank, U.: Multilevel modeling - toward a new paradigm of conceptual modeling and information systems design. Bus. Inf. Syst. Eng. 6(6), 319–337 (2014)CrossRefGoogle Scholar
  8. 8.
    Gerbig, R., Atkinson, C., de Lara, J., Guerra, E.: A feature-based comparison of melanee and metadepth. In: Proceedings of MULTI@MODELS. CEUR, vol. 1722, pp. 25–34 (2016)Google Scholar
  9. 9.
    Igamberdiev, M., Grossmann, G., Selway, M., Stumptner, M.: An integrated multi-level modeling approach for industrial-scale data interoperability. SoSyM 1–26 (2016, to appear)Google Scholar
  10. 10.
    Jahn, M., Roth, B., Jablonski, S.: Remodeling to powertype pattern. In: Proceedings of PATTERNS, pp. 59–65 (2013)Google Scholar
  11. 11.
    Jeusfeld, M.A., Neumayr, B.: DeepTelos: multi-level modeling with most general instances. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 198–211. Springer, Cham (2016). doi: 10.1007/978-3-319-46397-1_15CrossRefGoogle Scholar
  12. 12.
    Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench: a multi-level language workbench for MDE. Proc. Est. Acad. Sci. 62(1), 3–15 (2013)CrossRefGoogle Scholar
  13. 13.
    Macías, F., Rutle, A., Stolz, V.: MultEcore: combining the best of fixed-level and multilevel metamodelling. In: MULTI@MODELS. CEUR, vol. 1722, pp. 66–75 (2016)Google Scholar
  14. 14.
    Mouelhi, T., Fleurey, F., Baudry, B.: A generic metamodel for security policies mutation. In: Proceedings of ICST, pp. 278–286. IEEE Computer Society (2008)Google Scholar
  15. 15.
    Neumayr, B., Schuetz, C.G., Jeusfeld, M.A., Schrefl, M.: Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic. SoSyM 1–36 (2016, to appear)Google Scholar
  16. 16.
    Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G., Schrefl, M.: A conceptual framework for large-scale ecosystem interoperability and industrial product lifecycles. Data Knowl. Eng. 1–27 (2017, in press)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernando Macías
    • 1
  • Esther Guerra
    • 2
  • Juan de Lara
    • 2
  1. 1.Western Norway University of Applied SciencesBergenNorway
  2. 2.Universidad Autónoma de MadridMadridSpain

Personalised recommendations