Towards Thinking Manufacturing and Design Together: An Aeronautical Case Study

  • Thomas Polacsek
  • Stéphanie RousselEmail author
  • François Bouissiere
  • Claude Cuiller
  • Pierre-Eric Dereux
  • Stéphane Kersuzan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)


The construction of complex objects, such as an aircraft, requires the creation of a dedicated industrial system. By industrial system, we mean all the material and immaterial means used to manufacture the object (labour, machines, factories, etc.). Classically, the industrial system is specified when the aircraft design is already engaged. In other words, the specifications of the product are the requirements of the industrial system. This approach presents two major drawbacks: firstly, the industrial system can inherit blocking constraints that could be easily removed by changing the aircraft design, and secondly, both continue to evolve during the lifetime of the aircraft programme. In this paper, we address the problem of having a global view of design and manufacturing. Starting from an industrial case study, the Airbus A320 aircraft manufacturing, we proposed a model-based approach, firsts steps towards tools for specifying together and consistently the design of an aircraft and its manufacturing system.


Model-based systems engineering Simultaneous engineering Manufacturing Aeronautics Factory of the future 


  1. 1.
    Batarseh, O., McGinnis, L.F.: Sysml to discrete-event simulation to analyze electronic assembly systems. In: Proceedings of the 2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, TMS/DEVS 2012, San Diego, CA, USA, pp. 48:1–48:8. Society for Computer Simulation International (2012)Google Scholar
  2. 2.
    Benkamoun, N., ElMaraghy, W., Huyet, A.L., Kouiss, K.: Architecture framework for manufacturing system design. Procedia CIRP 17, 88–93 (2014). doi: 10.1016/j.procir.2014.01.101CrossRefGoogle Scholar
  3. 3.
    Bruno, G., Antonelli, D., Villa, A.: A reference ontology to support product lifecycle management. Procedia CIRP 33, 41–46 (2015)CrossRefGoogle Scholar
  4. 4.
    Delmas, R., Doose, D., Pires, A.F., Polacsek, T.: Supporting model based design. In: Bellatreche, L., Mota Pinto, F. (eds.) MEDI 2011. LNCS, vol. 6918, pp. 237–248. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24443-8_25CrossRefGoogle Scholar
  5. 5.
    Delmas, R., Polacsek, T.: Formal methods for exchange policy specification. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 288–303. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38709-8_19CrossRefGoogle Scholar
  6. 6.
    Demoly, F., Yan, X., Eynard, B., Rivest, L., Gomes, S.: An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot. Comput. Integr. Manuf. 27(1), 33–46 (2011)CrossRefGoogle Scholar
  7. 7.
    Göpfert, I., Schulz, M.: Logistics integrated product development in the German automotive industry: current state, trends and challenges. In: Kreowski, H.J., Scholz-Reiter, B., Thoben, K.D. (eds.) Dynamics in Logistics, pp. 509–519. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35966-8_43CrossRefGoogle Scholar
  8. 8.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)CrossRefGoogle Scholar
  9. 9.
    Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view on the semantics of model composition. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 99–113. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72901-3_8CrossRefGoogle Scholar
  10. 10.
    Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static invariant-based evaluation model. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.) Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, 10–14 June 2013. AAAI (2013)Google Scholar
  11. 11.
    Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to manage collections of related models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 141–155. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02144-2_15CrossRefGoogle Scholar
  12. 12.
    Shenas, D.G., Derakhshan, S.: Organizational approaches to the implementation of simultaneous engineering. Int. J. Oper. Prod. Manag. 14(10), 30–43 (1994)CrossRefGoogle Scholar
  13. 13.
    Sprock, T., McGinnis, L.F.: Analysis of functional architectures for discrete event logistics systems (DELS). Procedia Comput. Sci. 44, 517–526 (2015)CrossRefGoogle Scholar
  14. 14.
    Wisnosky, D.E., Vogel, J.: DoDAF Wizdom: A practical guide to planning. Managing and Executing Projects to Build Enterprise Architectures Using the Department of Defense Architecture Framework (DoDAF) (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Polacsek
    • 1
  • Stéphanie Roussel
    • 1
    Email author
  • François Bouissiere
    • 2
  • Claude Cuiller
    • 2
  • Pierre-Eric Dereux
    • 2
  • Stéphane Kersuzan
    • 2
  1. 1.ONERAToulouseFrance
  2. 2.AIRBUSBlagnacFrance

Personalised recommendations