Conceptual Modeling: Enhancement Through Semiotics

  • Veda C. Storey
  • Bernhard ThalheimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)


Conceptual modeling uses languages to represent the real world. Semiotics, as a general theory of signs and symbols, deals with the study of languages and is comprised of syntax, semantics, and pragmatics. Pragmatics includes the explicit representation of the intentions of users. A common assumption is that all levels of database design (user, conceptual, logical, and physical) can be modeled using the same language. However, languages at the conceptual level are often enhanced by concepts that attempt to capture inherent pragmatics. This research proposes that concepts from semiotics can provide the background needed to understand an application. Specifically, pragmatics and semantics are considered at both the user and conceptual level, based on proposed constraints.


Conceptual modeling Languages Semiotics Semantics Constraints 



This research was supported by the J. Mack Robinson College of Business, Georgia State University. Thanks to Melinda McDaniel for her assistance.


  1. 1.
    Embley, D.W., Mok, W.Y.: Mapping conceptual models to database schemas. In: Embley, D., Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 123–163. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-15865-0_5CrossRefGoogle Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  3. 3.
    Hartmann, S.: On the characterization and construction of entity-relationship database populations obeying cardinality constraints. Ph.D. thesis, University Rostock (1996)Google Scholar
  4. 4.
    Parsons, J., Wand, Y.: Using cognitive principles to guide classification in information systems modeling. MIS Q. 32(4), 839–868 (2008)CrossRefGoogle Scholar
  5. 5.
    Storey, V.C.: Relational database design based on the entity-relationship model. Data Knowl. Eng. 7(1), 47–83 (1991)CrossRefGoogle Scholar
  6. 6.
    Storey, V.C.: Understanding semantic relationships. VLDB J. 2(4), 455–488 (1993)CrossRefGoogle Scholar
  7. 7.
    Storey, V.C.: Comparing relationships in conceptual modeling: mapping to semantic classifications. IEEE Trans. Knowl. Data Eng. 17(11), 1478–1489 (2005)CrossRefGoogle Scholar
  8. 8.
    Schewe, K.-D., Thalheim, B.: About semantics. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 1–22. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23441-5_1CrossRefzbMATHGoogle Scholar
  9. 9.
    Thalheim, B.: Entity-Relationship Modeling-Foundations of Database Technology. Springer, Berlin (2000)CrossRefGoogle Scholar
  10. 10.
    Thalheim, B.: Syntax, semantics and pragmatics of conceptual modelling. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 1–10. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31178-9_1CrossRefGoogle Scholar
  11. 11.
    Thalheim, B., Tropmann-Frick, M.: Enhancing entity-relationship schemata for conceptual database structure models. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 603–611. Springer, Cham (2015). doi: 10.1007/978-3-319-25264-3_47CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Information Systems, J. Mack Robinson College of BusinessGeorgia State UniversityAtlantaUSA
  2. 2.Department of Computer ScienceChristian-Albrechts-UniversityKielGermany

Personalised recommendations