Advertisement

Conceptual Modelling of Autonomous Multi-cloud Interaction with Reflective Semantics

  • Andreea Buga
  • Sorana Tania Nemeş
  • Klaus-Dieter Schewe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)

Abstract

Distributed systems that exploit software services from multiple clouds provide opportunities for software systems that address problems associated with systems of systems. In this paper we present an approach for the conceptual modelling of such systems, which is grounded in a distributed middleware that coordinates the client access to multiple clouds through a concept of mediator. Furthermore, each component of the middleware constitutes an abstract machine that is realised by three layers: a layer for normal operation, a layer for monitoring and detection of critical situations, and an adaptation layer, which in case of an identified anomaly changes the normal behaviour. The semantics of this autonomous system can be captured by linguistic reflection, for which reflective Abstract State Machines will be exploited.

References

  1. 1.
    Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for engineering a toolset for a formal method. Softw. Pract. Exp. 41(2), 155–166 (2011)CrossRefGoogle Scholar
  2. 2.
    Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Informatica 53(5), 469–492 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with applications. J. Comput. Syst. Sci. 78(3), 939–959 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bósa, K.: Formal modeling of mobile computing systems based on ambient abstract state machines. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693, pp. 18–49. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36008-4_2CrossRefGoogle Scholar
  6. 6.
    Bósa, K.: An ambient ASM model for client-to-client interaction via cloud computing. In: Proceedings of 8th International Conference on Software and Data Technologies (ICSOFT), pp. 459–470. SciTePress (2013)Google Scholar
  7. 7.
    Bósa, K., Holom, R.M., Vleju, M.B.: A formal model of client-cloud interaction. In: Thalheim, B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in Web Applications and Web Services. A Series of the Research Institute for Symbolic Computation, pp. 1–61. Springer, Cham (2014). doi: 10.1007/978-3-319-17112-8_4CrossRefGoogle Scholar
  8. 8.
    Buga, A., Nemeş, S.T.: Towards an ASM specification for monitoring and adaptation services of large-scale distributed systems. In: 41st Annual Computer Software and Applications Conference, COMPSAC Workshops 2017, Torino, Italy, 4–8 July 2017. IEEE (2017, to appear)Google Scholar
  9. 9.
    Calzarossa, M., Della Vedova, M.L., Massari, L., Petcu, D., Tabash, M.I.M., Tessera, D.: Workloads in the clouds. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. Reliability Engineering. Springer, Cham (2016). doi: 10.1007/978-3-319-30599-8_20CrossRefGoogle Scholar
  10. 10.
    Calzarossa, M., Massari, L., Tessera, D.: Workload characterization: a survey revisited. ACM Comput. Surv. 48(3), 48:1–48:43 (2016)CrossRefGoogle Scholar
  11. 11.
    Cheng, B.H.C., de Lemor, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02161-9CrossRefGoogle Scholar
  12. 12.
    Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchronised parallel computing - simplified parallel ASM thesis. Theoret. Comput. Sci. 649, 25–53 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a simulation engine for abstract state machines. J. Univ. Comput. Sci. 14(12), 1949–1983 (2008)Google Scholar
  14. 14.
    Gurevich, Y.: Sequential abstract state machines capture sequential algorithms. ACM Trans. Comput. Log. 1(1), 77–111 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huebscher, M., McCann, J.: A survey of autonomic computing - degrees, models, and applications. ACM Comput. Surv. 40(3), 7 (2008). Article No. 7CrossRefGoogle Scholar
  16. 16.
    Lampesberger, H.: Technologies for web and cloud service interaction: a survey. SOCA 10(2), 71–110 (2016)CrossRefGoogle Scholar
  17. 17.
    Lampesberger, H., Rady, M.: Monitoring of client-cloud interaction. In: Thalheim, B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in Web Applications and Web Services. A Series of the Research Institute for Symbolic Computation, pp. 177–228. Springer, Cham (2015). doi: 10.1007/978-3-319-17112-8_6CrossRefGoogle Scholar
  18. 18.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78(5), 293–303 (2009)CrossRefGoogle Scholar
  19. 19.
    Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software services. SOCA 3(4), 263–283 (2009)CrossRefGoogle Scholar
  20. 20.
    Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperability of service clouds. SOCA 6(3), 189–205 (2012)CrossRefGoogle Scholar
  21. 21.
    Mirandola, R., Potena, P., Scandurra, P.: An optimization process for adaptation space exploration of service-oriented applications. In: Proceedings of 6th IEEE International Symposium on Service-Oriented System Engineering (SOSE 2011), pp. 146–151. IEEE (2011)Google Scholar
  22. 22.
    Nusayr, A., Cook, J.: Extending AOP to support broad runtime monitoring needs. In: Software Engineering and Knowledge Engineering, pp. 438–441 (2009)Google Scholar
  23. 23.
    Salchie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14 (2009). Article No.14Google Scholar
  24. 24.
    Schewe, K.D., Ferrarotti, F., Tec, L., Wang, Q., An, W.: Evolving concurrent systems - behavioural theory and logic. In: Proceedings of Australasian Computer Science Week (ACSW 2017), pp. 77:1–77:10. ACM, Deakin University, Victoria, 31 January – 3 February 2017Google Scholar
  25. 25.
    Shin, K.S., Jung, J.H., Cheon, J.Y., Choi, S.B.: Real-time network monitoring scheme based on SNMP for dynamic information. J. Netw. Comput. Appl. 30(1), 331–353 (2007)CrossRefGoogle Scholar
  26. 26.
    Zeng, W., Wang, Y.: Design and implementation of server monitoring system based on SNMP. In: JCAI, pp. 680–682 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreea Buga
    • 1
  • Sorana Tania Nemeş
    • 1
  • Klaus-Dieter Schewe
    • 1
  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations