Advertisement

Linear Curve Fitting-Based Headline Estimation in Handwritten Words for Indian Scripts

  • Rahul PramanikEmail author
  • Soumen Bag
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10597)

Abstract

Most segmentation algorithms for Indian scripts require some prior knowledge about the structure of a handwritten word to efficiently fragment the word into constituent characters. Zone detection is a considerably used strategy for this purpose. Headline estimation is a salient part of zone detection. In the present work, we propose a method that uses simple linear regression for estimating headlines present in handwritten words. This method efficiently detects headline in three Indian scripts, namely Bangla, Devanagari, and Gurmukhi. The proposed method is able to detect headlines in skewed word images and provides accurate result even when the headline is discontinuous or mostly absent. We have compared our method with a recent work to show the efficacy of our proposed methodology.

Keywords

Handwritten words Headline estimation Indian scripts Linear regression 

References

  1. 1.
    Bag, S., Harit, G.: A survey on optical character recognition for Bangla and Devanagari scripts. Sadhana 38(1), 133–168 (2013)CrossRefGoogle Scholar
  2. 2.
    Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: A two-stage approach for Segmentation of Handwritten Bangla word Images. In: Proceedings of ICFHR, pp. 403–408 (2008)Google Scholar
  3. 3.
    Roy, P.P., Dey, P., Roy, S., Pal, U., Kimura, F.: A novel approach of Bangla handwritten text recognition using HMM. In: Proceedings of ICFHR, pp. 661–666 (2014)Google Scholar
  4. 4.
    Bag, S., Krishna, A.: Character segmentation of hindi unconstrained handwritten words. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 247–260. Springer, Cham (2015). doi: 10.1007/978-3-319-26145-4_18 CrossRefGoogle Scholar
  5. 5.
    Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: CMATERdb1: a database of unconstrained handwritten Bangla and BanglaEnglish mixed script document image. IJDAR 15(1), 71–83 (2012). Accessed 8 Feb 2017CrossRefGoogle Scholar
  6. 6.
    Stamatopoulos, N., Gatos, B., Louloudis, G., Pal, U., Alaei, A.: ICDAR 2013 handwriting segmentation contest. In: Proceedings of ICDAR, pp. 1402–1406 (2013). Accessed 12 Mar 2017Google Scholar
  7. 7.
    CMATERdb 1.5.1: http://archive.is/xDqG6#selection-621.0-623.41. Accessed 2 Jan 2017
  8. 8.
    Das, N., Halder, C., Obaidullah, S.M., Roy, K., Santosh, K.C.: PHDIndic_11: page-level handwritten document image dataset of 11 official Indic scripts for script identification. In: Multimedia Tools and Applications, pp. 1–36 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (ISM) DhanbadDhanbadIndia

Personalised recommendations