Advertisement

Miscibility Gap Alloys: A New Thermal Energy Storage Solution

  • Erich KisiEmail author
  • Heber Sugo
  • Dylan Cuskelly
  • Thomas Fiedler
  • Anthony Rawson
  • Alex Post
  • James Bradley
  • Mark Copus
  • Samuel Reed
Chapter
Part of the Innovative Renewable Energy book series (INREE)

Abstract

The status of miscibility gap alloys (MGA), which have demonstrated excellent characteristics for thermal storage applications over a wide range of temperatures, is reviewed. MGA remain macroscopically solid whilst delivering latent heat from embedded metal particles supplemented by the sensible heat of the whole material. Heat can be delivered rapidly due to very high thermal conductivity leading to modular solid storage designs which can act as solar boilers for direct steam CSP or other applications. Progress in the manufacture, alloy design and a demonstration of 1.5 kW steam turbine generator with integrated MGA storage unit are briefly described.

Keywords

Miscibility Gap Alloy Thermal Energy Storage Phase Change Material Concentrated Solar Power 

References

  1. Copus, M., Reed, S., Kisi, E. H., Sugo, H. O., & Bradley, J. (2017). Scaling up miscibility gap alloy thermal storage materials. In Transition Towards 100% Renewable Energy: Selected papers from the World Renewable Energy Congress (WREC XVI) , 2017, ISBN: 978-3-319-69843-4.Google Scholar
  2. Kenisarin, M. M. (2010). High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 14, 955–970.CrossRefGoogle Scholar
  3. Khan, Z., Khan, Z., & Ghafoor, A. (2016). A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management, 115, 132–158.CrossRefGoogle Scholar
  4. Khare, S., Dell’Amico, M., Knight, C., & McGarry, S. (2012). Selection of materials for high temperature latent heat energy storage. Solar Energy Materials & Solar Cells, 107, 20–27.CrossRefGoogle Scholar
  5. Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M., & Stefanakos, E. K. (2013). Thermal energy storage technologies and systems for concentrating solar power. Progress in Energy and Combustion Science, 39, 285–319.CrossRefGoogle Scholar
  6. Laing, D., Bahl, C., Bauer, T., Fiss, M., Breidenbach, N., & Hempel, M. (2012). High-temperature solid media thermal energy storage for solar thermal plants. Proceedings of the IEEE, 100(2), 516–524.CrossRefGoogle Scholar
  7. Post, A., Rawson, A. J., Sugo, H. O., Cuskelly, D. T., Bradley, J., & Kisi, E. H. (2017). Price estimation for miscibility gap alloy thermal storage systems. Renewable Energy and Environmental Sustainability 2, 32.Google Scholar
  8. Rathod, M. K., & Bannerjee, J. (2013). Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews, 18, 246–258.CrossRefGoogle Scholar
  9. Rawson, A. J., Sugo, H. O., & Kisi, E. H. (2014). Characterising thermal properties of miscibility gap alloys for thermal storage applications. In Proceedings 52nd conference of the Australian Solar Council, Melbourne.Google Scholar
  10. Rawson, A. J. (2016). Modelling and application of advanced thermal storage materials. PhD thesis, University of Newcastle, Newcastle.Google Scholar
  11. Reed, S., Sugo, H., & Kisi, E. H. (2017). New highly thermally conductive thermal storage media. In Transition Towards 100% Renewable Energy: Selected papers from the World Renewable Energy Congress (WREC XVI), 2017, ISBN: 978-3-319-69843-4. Google Scholar
  12. Relebohele, J. R., & Dinter, F. (2015). Evaluation of parasitic consumption for a CSP plant. In Proceedings solar PACES 2015, AIP conf. proceedings 1734, document 070027 (pp. 1–8).Google Scholar
  13. Rintoul, M. D., & Torquato, S. (1997). Precise determination of the critical threshold and exponents in a three – Dimensional continuum percolation model. Journal of Physics A: Mathematical and General, 30, L585–L592.CrossRefzbMATHGoogle Scholar
  14. Song, C., Wang, P., & Makse, H. A. (2008). A phase diagram for jammed matter. Nature, 453, 629–632.CrossRefGoogle Scholar
  15. Sugo, H. O., Kisi, E. H., & Cuskelly, D. T. (2013). Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications. Applied Thermal Engineering, 51, 1345–1351.CrossRefGoogle Scholar
  16. Sugo, H. O., Kisi, E. H., Bradley, J., Fiedler, T., & Luzin, V. (2017). In situ Neutron diffraction studies of operating MGA thermal storage materials. Renewable Energy Environmental Sustainability 2, 34.Google Scholar
  17. Xu, B., Li, P. W., & Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Applied Energy, 160, 286–307.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Erich Kisi
    • 1
    Email author
  • Heber Sugo
    • 1
  • Dylan Cuskelly
    • 1
  • Thomas Fiedler
    • 1
  • Anthony Rawson
    • 1
  • Alex Post
    • 1
  • James Bradley
    • 1
  • Mark Copus
    • 1
  • Samuel Reed
    • 1
  1. 1.Structure of Advanced Materials Group, School of EngineeringUniversity of NewcastleCallaghanAustralia

Personalised recommendations