Modelling Population Dynamics Using a Hybrid Simulation Approach: Application to Healthcare

  • Bożena MielczarekEmail author
  • Jacek Zabawa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 676)


The goal of the study is presenting a population submodel developed using the system dynamics (SD) approach and discussing solutions for the integration of the SD methodology with discrete time control in formulating long-term projections for population evolution and its influence on healthcare demand. This study relies on historical demographic data and officially formulated scenarios for the most likely population projections for the Wrocław Region. The historical parameters are applied from 2002 to 2014, and projected trends are adopted for 2015 to 2035. The preliminary findings confirm the validity of using the hybrid simulation approach for a more advanced exploration of demography-dependent health policy issues.


System dynamics Discrete simulation Demography Age pyramid Healthcare demand 



This Project Was Financed by the Grant Simulation Modeling of the Demand for Healthcare Services from the National Science Centre, Poland, and Was Awarded based on the Decision 2015/17/B/HS4/00306.


  1. 1.
    Lisenkova, K., Mérette, M., Wright, R.: Population ageing and the labour market: modelling size and age-specific effects. Econ. Model. 35, 981–989 (2013)CrossRefGoogle Scholar
  2. 2.
    Tian, Y., Zhao, X.: Stochastic forecast of the financial sustainability of basic pension in China. Sustainability 8, 46 (2016)CrossRefGoogle Scholar
  3. 3.
    Lauf, S., Haase, D., Kleinschmit, B.: The effects of growth, shrinkage, population aging and preference shifts on urban development–a spatial scenario analysis of Berlin, Germany. Land Use Policy 52, 240–254 (2016)CrossRefGoogle Scholar
  4. 4.
    Ansah, J.P., Eberlein, R.L., Love, S.R., Bautista, M.A., Thompson, J.P., Malhotra, R., Matchar, D.B.: Implications of long-term care capacity response policies for an aging population: a simulation analysis. Health Policy 116, 105–113 (2014)CrossRefGoogle Scholar
  5. 5.
    Lutz, W., Sanderson, W., Scherbov, S.: The end of world population growth. Nature 412, 543–545 (2001)CrossRefGoogle Scholar
  6. 6.
    Lassila, J., Valkonen, T., Alho, J.M.: Demographic forecasts and fiscal policy rules. Int. J. Forecast. 30, 1098–1109 (2014)CrossRefGoogle Scholar
  7. 7.
    Davis, P., Lay-Yee, R., Pearson, J.: Using micro-simulation to create a synthesised data set and test policy options: the case of health service effects under demographic ageing. Health Policy 97, 267–274 (2010)CrossRefGoogle Scholar
  8. 8.
    Homer, J.B., Hirsch, G.B.: System dynamics modeling for public health: background and opportunities. Am. J. Public Health 96, 452–458 (2006)CrossRefGoogle Scholar
  9. 9.
    Barber, P., Lopez-Valcarcel, B.: Forecasting the need for medical specialists in Spain: application of a system dynamics model. Hum. Resour. Health 8, 24 (2010)CrossRefGoogle Scholar
  10. 10.
    Masnick, K., McDonnell, G.: A model linking clinical workforce skill mix planning to health and health care dynamics. Hum. Resour. Health 8, 11 (2010)CrossRefGoogle Scholar
  11. 11.
    Jun, J.B., Jacobson, S.H., Swisher, J.R.: Application of discrete-event simulation in health care clinics: a survey. J. Oper. Res. Soc. 50, 109–123 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Mielczarek, B., Uziałko-Mydlikowska, J.: Application of computer simulation modeling in the health care sector: a survey. Simulation 88, 197–216 (2012)CrossRefGoogle Scholar
  13. 13.
    GUS, Główny Urząd Statystyczny. Accessed Dec 2015
  14. 14.
    Sterman, J.D.: Business Dynamics. System Thinking and Modeling for a Complex World. McGraw-Hill Higher Education, Boston (2000)Google Scholar
  15. 15.
    Mustafee, N., Katsaliaki, K., Taylor, S.J.E.: Profiling literature in healthcare simulation. Simulation 86, 543–558 (2010)CrossRefGoogle Scholar
  16. 16.
    Testi, A., Tanfani, E., Torre, G.: A three-phase approach for operating theatre schedules. Health Care Manag. Sci. 10, 72–163 (2007)CrossRefGoogle Scholar
  17. 17.
    Sinreich, D., Marmor, Y.N.: Emergency department operations: the basis for developing a simulation model. IIE Trans. 37, 233–245 (2005)CrossRefGoogle Scholar
  18. 18.
    Hughes, G.R., Currie, C.S.M., Corbett, E.L.: Modeling tuberculosis in areas of high HIV prevalence. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simulation Conference, pp. 459–465. Institute of Electrical and Electronics Engineers, Inc., Piscataway (2006)Google Scholar
  19. 19.
    Kasaie, P., Kelton, W.D., Vaghefi, A., Naini, S.G.R.J.: Toward optimal resource-allocation for control of epidemics: an agent-based-simulation approach. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the 2010 Winter Simulation Conference, pp. 2237–2248. Institute of Electrical and Electronics Engineers, Inc., Piscataway (2010)Google Scholar
  20. 20.
    Ashton, R., Hague, L., Brandreth, M., Worthington, D., Cropper, S.: A simulation-based study of a NHS walk-in centre. J. Oper. Res. Soc. 56, 153–161 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cardoso, T., Oliveira, M., Barbosa-Póvoa, A., Nickel, S.: Modeling the demand for long-term care services under uncertain information. Health Care Manag. Sci. 15, 385–412 (2012)CrossRefGoogle Scholar
  22. 22.
    Christie, P.M., Levary, R.R.: The use of simulation in planning the transportation of patients to hospitals following a disaster. J. Med. Syst. 22, 289–300 (1998)CrossRefGoogle Scholar
  23. 23.
    Han, L.D., Yuan, F., Shih-Miao, C., Hwang, H.: Global optimization of emergency evacuation assignments. Interfaces 36, 502–513 (2006)Google Scholar
  24. 24.
    Caro, J.J., Guo, S., Ward, A., Shajil, C., Malik, F., Leyva, F.: Modelling the economic and health consequences of cardiac resynchronization therapy in the UK. Curr. Med. Res. Opin. 22, 1171–1179 (2006)CrossRefGoogle Scholar
  25. 25.
    Lane, D.C., Monefeldt, C., Rosenhead, J.V.: Looking in the wrong place for healthcare improvements: a system dynamics study of an accident and emergency department. J. Oper. Res. Soc. 51, 518–531 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Mielczarek, B., Zabawa, J.: Modelling population growth, shrinkage and aging using a hybrid simulation approach: application to healthcare. In: Merkuryev, J., Oren, T., Obaidat, M.S. (eds.) Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2016, pp. 75–83. SciTePress (2016)Google Scholar
  27. 27.
    Eberlein, R.L., Thompson, J.P., Matchar, D.B.: Chronological aging in continuous time. In: Husemann, E., Lane, D. (eds.) Proceedings of the 30th International Conference of the System Dynamics Society (2011)Google Scholar
  28. 28.
    Mielczarek, B., Zabawa, J., Lubicz, M.: A system dynamics model to study the impact of an age pyramid on emergency demand. In: Obaidat, M.S., Kacprzyk, J., Oren, T. (eds.) Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 879–888. SciTePress (2014)Google Scholar
  29. 29.
    Krahl, D.: ExtendSim advanced technology: discrete rate simulation. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A, Ingalls, R.G. (eds.) Proceedings of the 2009 Winter Simulation Conference, pp. 333–338. Institute of Electrical and Electronics Engineers, Inc., Piscataway (2009)Google Scholar
  30. 30.
    Waligórska, M., Kostrzewa, Z., Potyra, M., Rutkowska, L.: Population projection 2014–2050, CSO, Demographic Surveys and Labour Market Department (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Operations Research, Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations