Advertisement

Layout-Aware Semi-automatic Information Extraction for Pharmaceutical Documents

  • Simon Harmata
  • Katharina Hofer-Schmitz
  • Phuong-Ha Nguyen
  • Christoph QuixEmail author
  • Bujar Bakiu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10649)

Abstract

Pharmaceutical companies and regulatory authorities are also affected by the current digitalization process and transform their paper-based, document-oriented communication to a structured, digital information exchange. The documents exchanged so far contain a huge amount of information that needs to be transformed into a structured format to enable a more efficient communication in the future. In such a setting, it is important that the information extracted from documents is very accurate as the information is used in a legal, regulatory process and also for the identification of unknown adverse effects of medicinal products that might be a threat to patients’ health. In this paper, we present our layout-aware semi-automatic information extraction system LASIE that combines techniques from rule-based information extraction, flexible data management, and semantic information management in a user-centered design. We applied the system in a case study with an industrial partner and achieved very satisfying results.

Notes

Acknowledgements

This work has been partially funded by the German Federal Ministry of Education and Research (BMBF) (project HUMIT, http://humit.de/, grant no. 01IS14007A).

References

  1. 1.
    Aguiar, B.L., Mendes, E., Ferreira, L. Information extraction from medication leaflets. Ph.D. thesis, Master thesis, FEUP, Porto (2012)Google Scholar
  2. 2.
    Bakiu, B.: Layout-aware semantic information extraction from semi-structured documents. RWTH Aachen University, Master (2015)Google Scholar
  3. 3.
    Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F.R., Vaithyanathan, S.: SystemT: an algebraic approach to declarative information extraction. In: Proceeding 48th Annual Meeting Assocation Computational Linguistics, ACL 2010, pp. 128–137. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)Google Scholar
  4. 4.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., et al.: Developing language processing components with GATE version 7 (a user guide). University of Sheffield, UK (2013). https://gate.ac.uk/sale/tao/index.html
  5. 5.
    Duke, J.D., Friedlin, J.: ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data. In: AMIA Annual Symposium Proceedings, vol. 2010, 177–181 (2010)Google Scholar
  6. 6.
    Ejiri, M.: Knowledge-based approaches to practical image processing. In: Industrial Applications of Machine Intelligence and Vision (MIV-89), Tokyo, 10–12 April 1989, p. 1 (1989)Google Scholar
  7. 7.
    Gao, L., Tang, Z., Lin, X., Liu, Y., Qiu, R., Wang, Y.: Structure extraction from PDF-based book documents. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital libraries, pp. 11–20. ACM (2011)Google Scholar
  8. 8.
    Ge, C., Zhang, Y., Duan, H., Li, H.: Identification of adverse drug events in chinese clinical narrative text. In: Park, J.J.J.H., Pan, Y., Chao, H.-C., Yi, G. (eds.) Ubiquitous Computing Application and Wireless Sensor. LNEE, vol. 331, pp. 605–612. Springer, Dordrecht (2015). doi: 10.1007/978-94-017-9618-7_62 Google Scholar
  9. 9.
    Gobel, M., Hassan, T., Oro, E., Orsi, G.: ICDAR 2013 Table Competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1449–1453. IEEE, August 2013Google Scholar
  10. 10.
    Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)Google Scholar
  11. 11.
    Iqbal, E., Mallah, R., Jackson, R.G., Ball, M., Ibrahim, Z.M., Broadbent, M., Dzahini, O., Stewart, R., Johnston, C., Dobson, R.J.B.: Identification of adverse drug events from free text electronic patient records and information in a large mental health case register. PLoS One 10(8), e0134208 (2015)CrossRefGoogle Scholar
  12. 12.
    Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: a generic role based metamodel for model management. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 82–117. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70664-9_4 CrossRefGoogle Scholar
  13. 13.
    Kluegl, P., Atzmueller, M., Puppe, F.: TextMarker: a tool for rule-based information extraction. In: Chiarcos, C., de Castilho, R.E., Stede, M. (eds.) Proceedings of the Biennial GSCL Conference 2009, 2nd UIMA@GSCL Workshop, pp. 233–240. Gunter Narr Verlag (2009). http://ki.informatik.uni-wuerzburg.de/papers/pkluegl/2009-GSCL-TextMarker.pdf
  14. 14.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N., Fields, C.R.: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)Google Scholar
  15. 15.
    Meystre, S., Haug, P.J.: Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. J. Biomed. Inform. 39(6), 589–599 (2006)CrossRefGoogle Scholar
  16. 16.
    Nagy, G., Seth, S.: Hierarchical representation of optically scanned documents. In: International Conference on Pattern Recognition, vol. 1, pp. 347–349 (1984)Google Scholar
  17. 17.
    Nahler, G.: Dictionary of Pharmaceutical Medicine. Springer, Vienna (2009). doi: 10.1007/978-3-211-89836-9 CrossRefGoogle Scholar
  18. 18.
    Sarawagi, S.: Information extraction. Found. Trends® Databases 1(3), 261–377 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Thompson, C.A., Califf, M.E., Mooney, R.J.: Active learning for natural language parsing and information extraction. In: ICML, pp. 406–414 (1999)Google Scholar
  20. 20.
    Wang, X., Chase, H., Markatou, M., Hripcsak, G., Friedman, C.: Selecting information in electronic health records for knowledge acquisition. J. Biomed. Inform. 43(4), 595–601 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Simon Harmata
    • 1
  • Katharina Hofer-Schmitz
    • 1
  • Phuong-Ha Nguyen
    • 1
  • Christoph Quix
    • 1
    Email author
  • Bujar Bakiu
    • 1
  1. 1.Fraunhofer Institute for Applied Information Technology FIT Schloss BirlinghovenSankt AugustinGermany

Personalised recommendations