Quantitative Gel Electrophoresis

  • Victoria J. Mansour
  • Jens R. CoorssenEmail author


Gel electrophoresis is the most widely used technique for the analysis of protein samples, and there are a variety of methods that can be used to investigate single proteins as well as highly complex protein mixtures. To ensure reproducible and reliable separations of such samples and the resolution of distinct protein species, there has been a substantial amount of research dedicated to optimising methods to the refined techniques available today. There are thus a number of factors that have a marked influence on the practice of quantitative proteomics. The procedures and reagents involved in preparing a protein sample can have a significant effect on the composition of the proteome and/or its resolution by electrophoresis. Furthermore, since most proteins are colourless, a protein stain is required to detect the resolved proteome; thus, it is essential that the characteristics of the stain enable optimal detection regardless of protein type and/or concentration. Notably, to obtain reliable quantitative data, the approach by which images are acquired is equally important.


Gel electrophoresis Protein stain Fluorescence Sample preparation Quantitative analysis Protein detection Deep imaging 1D/2D/3D gel electrophoresis 



One-dimensional electrophoresis


Two-dimensional electrophoresis


Colloidal Coomassie brilliant blue


Coomassie brilliant blue


3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate


Difference gel electrophoresis


Deoxyribonucleic acid




Lowest limit of detection


Linear dynamic range


Isoelectric focussing


Inter-protein variability


Infrared fluorescence


Mass spectrometry


Molecular weight


Neuhoff colloidal Coomassie brilliant blue


Polyacrylamide gel electrophoresis


Ribonucleic acid


Sodium dodecyl sulphate




Tributyl phosphine


  1. Ahnert N, Patton WF, Schulenberg B (2004) Optimized conditions for diluting and reusing a fluorescent protein gel stain. Electrophoresis 25(15):2506–2510PubMedCrossRefGoogle Scholar
  2. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44PubMedCrossRefGoogle Scholar
  3. Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125(31):9304–9305PubMedCrossRefGoogle Scholar
  4. Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics — a review. J Proteomics 74(3):282–293PubMedCrossRefGoogle Scholar
  5. Berger K, Wissmann D, Ihling C, Kalkhof S, Beck-Sickinger A, Sinz A, Paschke R, Führer D (2004) Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain. Mol Cell Endocrinol 227(1–2):21–30PubMedCrossRefGoogle Scholar
  6. Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21(12):2509–2521PubMedCrossRefGoogle Scholar
  7. Berggren KN, Schulenberg B, Lopez MF, Steinberg TH, Bogdanova A, Smejkal G, Wang A, Patton WF (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2(5):486–498PubMedCrossRefGoogle Scholar
  8. Bernocco S, Fondelli C, Matteoni S, Magnoni L, Gotta S, Terstappen GC, Raggiaschi R (2008) Sequential detergent fractionation of primary neurons for proteomics studies. Proteomics 8(5):930–938PubMedCrossRefGoogle Scholar
  9. Bjellqvist B, Ek K, Giorgio Righetti P, Gianazza E, Görg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6(4):317–339PubMedCrossRefGoogle Scholar
  10. Blakesley RW, Boezi JA (1977) A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Anal Biochem 82(2):580–582PubMedCrossRefGoogle Scholar
  11. Boschetti E, Righetti PG (2008) The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteomics 71(3):255–264PubMedCrossRefGoogle Scholar
  12. Butt RH, Coorssen JR (2005a) Postfractionation for enhanced proteomic analyses: routine electrophoretic methods increase the resolution of standard 2D-PAGE. J Proteome Res 4:982–991PubMedCrossRefGoogle Scholar
  13. Butt RH, Coorssen JR (2005b) Pre-extraction sample handling by automated frozen disruption significantly improves subsequent proteomic analyses. J Proteome Res 5(2):437–448CrossRefGoogle Scholar
  14. Butt RH, Coorssen JR (2013) Coomassie blue as a near-infrared fluorescent stain: a systematic comparison with sypro ruby for in-gel protein detection. Mol Cell Proteomics 12(12):3834–3850PubMedPubMedCentralCrossRefGoogle Scholar
  15. Butt RH, Lee MWY, Pirshahid SA, Backlund PS, Wood S, Coorssen JR (2006) An initial proteomic analysis of human preterm labor: placental membranes. J Proteome Res 5(11):3161–3172PubMedCrossRefGoogle Scholar
  16. Cannon-Carlson S, Tang J (1997) Modification of the Laemmli sodium dodecyl sulfate-polyacrylamide gel electrophoresis procedure to eliminate artifacts on reducing and nonreducing gels. Anal Biochem 246:146–148PubMedCrossRefGoogle Scholar
  17. Castagna A, Cecconi D, Sennels L, Rappsilber J, Guerrier L, Fortis F, Boschetti E, Lomas L, Righetti PG (2005) Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res 4(6):1917–1930PubMedCrossRefGoogle Scholar
  18. Chevalier F, Rofidal V, Vanova P, Bergoin A, Rossignol M (2004) Proteomic capacity of recent fluorescent dyes for protein staining. Phytochemistry 65(11):1499–1506PubMedCrossRefGoogle Scholar
  19. Chevallet M, Diemer H, Luche S, Dorsselaer AV, Rabilloud T, Leize-Wagner E (2006) Improved mass spectrometry compatibility is afforded by ammoniacal silver staining. Proteomics 6(8):2350–2354PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chevallet M, Luche S, Diemer H, Strub J-M, Dorsselaer AV, Rabilloud T (2008) Sweet silver: a formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 8(23-24):4853–4861PubMedCrossRefGoogle Scholar
  21. Choi J-K, Yoon S-H, Hong H-Y, Choi D-K, Yoo G-S (1996) A modified coomassie blue staining of proteins in polyacrylamide gels with bismark brown R. Anal Biochem 236(1):82–84PubMedCrossRefGoogle Scholar
  22. Chrambach A, Rodbard D (1971) Polyacrylamide gel electrophoresis. Science 172(3982):440–451PubMedCrossRefGoogle Scholar
  23. Chrambach A, Rodbard D (1972) Polymerization of polyacrylamide gels: efficiency and reproducibility as a function of catalyst concentrations. Sep Sci Technol 7(6):663–703Google Scholar
  24. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374PubMedCrossRefGoogle Scholar
  25. Cong W-T, Hwang S-Y, Jin L-T, Choi J-K (2008) Sensitive fluorescent staining for proteomic analysis of proteins in 1-D and 2-D SDS-PAGE and its comparison with SYPRO Ruby by PMF. Electrophoresis 29(21):4304–4315PubMedCrossRefGoogle Scholar
  26. Coorssen J, Yergey A (2015) Proteomics is analytical chemistry: fitness-for-purpose in the application of top-down and bottom-up analyses. Proteomes 3(4):440PubMedPubMedCentralCrossRefGoogle Scholar
  27. Corthals GL, Molloy MP, Herbert BR, Williams KL, Gooley AA (1997) Prefractionation of protein samples prior to two-dimensional electrophoresis. Electrophoresis 18(3–4):317–323PubMedCrossRefGoogle Scholar
  28. Cutting JA, Roth TF (1973) Staining of Phospho-proteins on acrylamide gel electropherograms. Anal Biochem 54:386–394PubMedCrossRefGoogle Scholar
  29. de Moreno MR, Smith JF, Smith RV (1986) Mechanism studies of coomassie blue and silver staining of proteins. J Pharm Sci 75(9):907–911PubMedCrossRefGoogle Scholar
  30. De St. Groth SF, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochimica et Biophysica Acta 71:377–391CrossRefGoogle Scholar
  31. Ferro M, Seigneurin-Berny D, Rolland N, Chapel A, Salvi D, Garin J, Joyard J (2000) Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis 21(16):3517–3526PubMedCrossRefGoogle Scholar
  32. Fialka I, Pasquali C, Lottspeich F, Ahorn H, Huber LA (1997) Subcellular fractionation of polarized epithelial cells and identification of organelle-specific proteins by two-dimensional gel electrophoresis. Electrophoresis 18(14):2582–2590PubMedCrossRefGoogle Scholar
  33. Fountoulakis M, Takács M-F, Berndt P, Langen H, Takács B (1999a) Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography. Electrophoresis 20(11):2181–2195PubMedCrossRefGoogle Scholar
  34. Fountoulakis M, Takács M-F, Takács B (1999b) Enrichment of low-copy-number gene products by hydrophobic interaction chromatography. J Chromatogr A 833(2):157–168PubMedCrossRefGoogle Scholar
  35. Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4(3):793–811PubMedCrossRefGoogle Scholar
  36. Furlan M, Perret BA, Beck EA (1979) Staining of glycoproteins in polyacrylamide and agarose gels with fluorescent lectins. Anal Biochem 96(1):208–214PubMedCrossRefGoogle Scholar
  37. Gauci V, Wright E, Coorssen J (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4(1):3–29PubMedCrossRefGoogle Scholar
  38. Gauci VJ, Padula MP, Coorssen JR (2013) Coomassie blue staining for high sensitivity gel-based proteomics. J Proteomics 90:96–106PubMedCrossRefGoogle Scholar
  39. Ghosh D, Krokhin O, Antonovici M, Ens W, Standing KG, Beavis RC, Wilkins JA (2004) Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 3(4):841–850PubMedCrossRefGoogle Scholar
  40. Görg A, Boguth G, Köpf A, Reil G, Parlar H, Weiss W (2002) Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2(12):1652–1657PubMedCrossRefGoogle Scholar
  41. Hannig K (1978) Continuous free-flow electrophoresis as an analytical and preparative method in biology. J Chromatogr A 159(1):183–191CrossRefGoogle Scholar
  42. Harris LR, Churchwood MA, Butt RH, Coorssen JR (2007) Assessing detection methods for gel-based proteomic analyses. J Proteome Res 6:1418–1425PubMedCrossRefGoogle Scholar
  43. Hart C, Schulenberg B, Steinberg TH, Leung W-Y, Patton WF (2003) Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate schiff-base stain. Electrophoresis 24:588–598PubMedCrossRefGoogle Scholar
  44. Hegenauer J, Ripley L, Nace G (1977) Staining acidic phosphoproteins (phosvitin) in electrophoretic gels. Anal Biochem 78:308–311PubMedCrossRefGoogle Scholar
  45. Herbert B, Righetti PG (2000) A turning point in proteome analysis: sample prefractionation via multicompartment electrolyzers with isoelectric membranes. Electrophoresis 21(17):3639–3648PubMedCrossRefGoogle Scholar
  46. Herbert BR, Molloy MP, Gooley AA, Walsh BJ, Bryson WG, Williams KL (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19(5):845–851PubMedCrossRefGoogle Scholar
  47. Hill IE, Hogue CWV, Clark ID, Macmanus JP, Szabo AG (1994) Detection of calcium binding proteins on polyacrylamide gels using time-resolved lanthanide luminescence photography. Anal Biochem 216(2):439–443PubMedCrossRefGoogle Scholar
  48. Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP (2007) Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling. J Biol Chem 282(30):22040–22051PubMedCrossRefGoogle Scholar
  49. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kahn R, Rubin RW (1975) Quantitation of submicrogram amounts of protein using coomassie brilliant blue R on sodium dodecyl sulfate-polyacrylamide slab-gels. Anal Biochem 67(1):347–352PubMedCrossRefGoogle Scholar
  51. Kaufmann H, Bailey JE, Fussenegger M (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1(2):194–199PubMedCrossRefGoogle Scholar
  52. Keyser JW (1964) Staining of serum glycoproteins after electrophoretic separation in acrylamide gels. Anal Biochem 9:249–252PubMedCrossRefGoogle Scholar
  53. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue. Humangenetik 26:231–243PubMedGoogle Scholar
  54. Kreig RC, Paweletz CP, Liotta LA, Petricon EF III (2003) Dilution of protein gel stain results in retention of staining capacity. Biotechniques 35:376–378Google Scholar
  55. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar
  56. Larsen MR, Sørensen GL, Fey SJ, Larsen PM, Roepstorff P (2001) Phospho-proteomics: evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis. Proteomics 1(2):223–238PubMedCrossRefGoogle Scholar
  57. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886PubMedCrossRefGoogle Scholar
  58. Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22(5):906–918PubMedCrossRefGoogle Scholar
  59. Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by infrared fluorescence of coomassie blue and fast green. Anal Biochem 350:233–238PubMedCrossRefGoogle Scholar
  60. Mackintosh JA, Choi H-Y, Bae S-H, Veal DA, Bell PJ, Ferrari BC, Van Dyk DD, Verrills NM, Paik Y-K, Karuso P (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3(12):2273–2288PubMedCrossRefGoogle Scholar
  61. Mansour née Gauci VJ, Noaman N, Coorssen JR (2016) Gel-staining techniques – dyeing to know it all. In: eLS. Wiley, Chichester.
  62. Marengo E, Robotti E, Antonucci F, Cecconi D, Campostrini N, Righetti PG (2005) Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 5(3):654–666PubMedCrossRefGoogle Scholar
  63. Matthieu J-M, Quarles RH (1973) Quantitative scanning of glycoproteins on polyacrylamide gels stained with periodic acid-Schiff reagent (PAS). Anal Biochem 55(1):313–316PubMedCrossRefGoogle Scholar
  64. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6(20):5385–5408PubMedCrossRefGoogle Scholar
  65. Miura K (2001) Imaging and detection technologies for image analysis in electrophoresis. Electrophoresis 22(5):801–813PubMedCrossRefGoogle Scholar
  66. Miura K (2003) Imaging technologies for the detection of multiple stains in proteomics. Proteomics 3(7):1097–1108PubMedCrossRefGoogle Scholar
  67. Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez J-C, Hochstrasser DF, Williams KL, Gooley AA (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19(5):837–844PubMedCrossRefGoogle Scholar
  68. Molloy MP, Herbert BR, Williams KL, Gooley AA (1999) Extraction of Escherichia coli proteins with organic solvents prior to two-dimensional electrophoresis. Electrophoresis 20(4–5):701–704PubMedCrossRefGoogle Scholar
  69. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA (2000) Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267(10):2871–2881PubMedCrossRefGoogle Scholar
  70. Muñoz G, Marshall S, Cabrera M, Horvat A (1988) Enhanced detection of glycoproteins in polyacrylamide gels. Anal Biochem 170(2):491–494PubMedCrossRefGoogle Scholar
  71. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6(9):427–448CrossRefGoogle Scholar
  72. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis 9(6):255–262PubMedCrossRefGoogle Scholar
  73. Noaman N, Abbineni PS, Withers M, Coorssen JR (2017, September) Coomassie staining provides routine (sub)femtomole in-gel detection of intact proteoforms: expanding opportunities for genuine Top-down Proteomics. Electrophoresis.
  74. O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021Google Scholar
  75. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150PubMedCrossRefGoogle Scholar
  76. Partridge MA, Gopinath S, Myers SJ, Coorssen JR (2016) An initial top-down proteomic analysis of the standard cuprizone mouse model of multiple sclerosis. J Chem Biol 9(1):9–18PubMedCrossRefGoogle Scholar
  77. Pasquali C, Fialka I, Huber LA (1997) Preparative two-dimensional gel electrophoresis of membrane proteins. Electrophoresis 18(14):2573–2581PubMedCrossRefGoogle Scholar
  78. Pedersen SK, Harry JL, Sebastian L, Baker J, Traini MD, McCarthy JT, Manoharan A, Wilkins MR, Gooley AA, Righetti PG, Packer NH, Williams KL, Herbert BR (2003) Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins. J Proteome Res 2(3):303–311PubMedCrossRefGoogle Scholar
  79. Perdew GH, Schaup HW, Selivonchick DP (1983) The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal Biochem 135(2):453–455PubMedCrossRefGoogle Scholar
  80. Poduslo JF, Rodbard D (1980) Molecular weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis. Anal Biochem 101(2):394–406PubMedCrossRefGoogle Scholar
  81. Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19(5):758–760PubMedCrossRefGoogle Scholar
  82. Rabilloud T, Valette C, Lawrence JJ (1994) Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15(1):1552–1558PubMedCrossRefGoogle Scholar
  83. Rabilloud T, Adessi C, Giraudel A, Lunardi J (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18(3–4):307–316PubMedCrossRefGoogle Scholar
  84. Rabilloud T, Strub J-M, Luche S, Girardet JL, van Dorsselaer A, Lunardi J (2000) Ruthenium II tris (bathophenanthroline disulfonate), a powerful fluorescent stain for detection of proteins in gel with minimal interference in subsequent mass spectrometry analysis. Proteome 1(1):1–14CrossRefGoogle Scholar
  85. Ramsby ML, Makowski GS, Khairallah EA (1994) Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis 15(1):265–277PubMedCrossRefGoogle Scholar
  86. Raymond S, Wang Y-J (1960) Preparation and properties of acrylamide gel for use in electrophoresis. Anal Biochem 1(4–5):391–396PubMedCrossRefGoogle Scholar
  87. Raymond S, Weintraub L (1959) Acrylamide gel as a supporting medium for zone electrophoresis. Science 130:711PubMedCrossRefGoogle Scholar
  88. Reisner AH, Nemes P, Bucholtz C (1975) The use of coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 64(2):509–516PubMedCrossRefGoogle Scholar
  89. Sanchez J-C, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M, Wilkins MR, Hochstrasser DF (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18(3–4):324–327PubMedCrossRefGoogle Scholar
  90. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379PubMedCrossRefGoogle Scholar
  91. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231PubMedCrossRefGoogle Scholar
  92. Schägger H, Cramer WA, Vonjagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217(2):220–230PubMedCrossRefGoogle Scholar
  93. Scheele GA (1975) Two-dimensional gel analysis of soluble proteins: characterization of guinea pig exocrine pancreatic proteins. J Biol Chem 250:5375–5385PubMedGoogle Scholar
  94. Schröder B, Hasilik A (2006) A protocol for combined delipidation and subfractionation of membrane proteins using organic solvents. Anal Biochem 357(1):144–146PubMedCrossRefGoogle Scholar
  95. Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25(15):2526–2532PubMedCrossRefGoogle Scholar
  96. Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3(7):1181–1195PubMedCrossRefGoogle Scholar
  97. Shen Y, Kim J, Strittmatter EF, Jacobs JM, Camp DG, Fang R, Tolié N, Moore RJ, Smith RD (2005) Characterization of the human blood plasma proteome. Proteomics 5(15):4034–4045PubMedCrossRefGoogle Scholar
  98. Smejkal GB, Robinson MH, Lazarev A (2004) Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 25(15):2511–2519PubMedCrossRefGoogle Scholar
  99. Smith SD, She Y-M, Roberts EA, Sarkar B (2004) Using immobilized metal affinity chromatography, two-dimensional electrophoresis and mass spectrometry to identify hepatocellular proteins with copper-binding ability. J Proteome Res 3(4):834–840PubMedCrossRefGoogle Scholar
  100. Steinberg TH, Top KPO, Berggren KN, Kemper C, Jones L, Diwu Z, Haugland RP, Patton WF (2001) Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 1(7):841–855PubMedCrossRefGoogle Scholar
  101. Steinberg TH, Agnew BJ, Gee KR, Leung W-Y, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3(7):1128–1144PubMedCrossRefGoogle Scholar
  102. Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98(1):231–237PubMedCrossRefGoogle Scholar
  103. Tal M, Silberstein A, Nusser E (1985) Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer. J Biol Chem 260(18):9976–9980PubMedGoogle Scholar
  104. Taylor RS, Fialka I, Jones SM, Huber LA, Howell KE (1997) Two-dimensional mapping of the endogenous proteins of the rat hepatocyte Golgi complex cleared of proteins in transit. Electrophoresis 18(14):2601–2612PubMedCrossRefGoogle Scholar
  105. Thulasiraman V, Lin S, Gheorghiu L, Lathrop J, Lomas L, Hammond D, Boschetti E (2005) Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis 26(18):3561–3571PubMedCrossRefGoogle Scholar
  106. Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8(23–24):4886–4897PubMedCrossRefGoogle Scholar
  107. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1(3):377–396PubMedCrossRefGoogle Scholar
  108. Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077PubMedCrossRefGoogle Scholar
  109. Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358PubMedCrossRefGoogle Scholar
  110. Völkl A, Mohr H, Weber G, Fahimi HD (1997) Isolation of rat hepatic peroxisomes by means of immune free flow electrophoresis. Electrophoresis 18(5):774–780PubMedCrossRefGoogle Scholar
  111. Wang YY, Cheng P, Chan DW (2003) A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 3(3):243–248PubMedCrossRefGoogle Scholar
  112. Wardi AH, Michos GA (1972) Alcian blue staining of glycoproteins in acrylamide disc electrophoresis. Anal Biochem 49(2):607–609PubMedCrossRefGoogle Scholar
  113. Wasinger VC, Locke VL, Raftery MJ, Larance M, Rothemund D, Liew A, Bate I, Guilhaus M (2005) Two-dimensional liquid chromatography/tandem mass spectrometry analysis of Gradiflow™ fractionated native human plasma. Proteomics 5(13):3397–3401PubMedCrossRefGoogle Scholar
  114. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244(16):4406–4412PubMedGoogle Scholar
  115. Wissing J, Heim S, Flohé L, Bilitewski U, Frank R (2000) Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry. Electrophoresis 21(13):2589–2593PubMedCrossRefGoogle Scholar
  116. Wittig I, Schägger H (2005) Advantages and limitations of clear-native PAGE. Proteomics 5(17):4338–4346PubMedCrossRefGoogle Scholar
  117. Wright EP, Partridge MA, Padula MP, Gauci VJ, Malladi CS, Coorssen JR (2014a) Top-down proteomics: enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics 14(7–8):872–889PubMedCrossRefGoogle Scholar
  118. Wright EP, Prasad KAG, Padula MP, Coorssen JR (2014b) Deep imaging: how much of the proteome does current top-down technology already resolve? PLoS One 9(1):e86058PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wu J, Lenchik NJ, Pabst MJ, Solomon SS, Shull J, Gerling IC (2005) Functional characterization of two-dimensional gel-separated proteins using sequential staining. Electrophoresis 26(1):225–237PubMedCrossRefGoogle Scholar
  120. Yamada S, Nakamura H, Kinoshita E, Kinoshita-Kikuta E, Koike T, Shiro Y (2007) Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal Biochem 360(1):160–162PubMedCrossRefGoogle Scholar
  121. Yan L-J, Orr WC, Sohal RS (1998) Identification of oxidized proteins based on sodium dodecyl sulfate–polyacrylamide gel electrophoresis, immunochemical detection, isoelectric focusing, and microsequencing. Anal Biochem 263(1):67–71PubMedCrossRefGoogle Scholar
  122. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization- mass spectrometry. Electrophoresis 21(17):3666–3672PubMedCrossRefGoogle Scholar
  123. Zhao G, Meier TI, Kahl SD, Gee KR, Blaszczak LC (1999) BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother 43(5):1124–1128PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Medicine, Western Sydney UniversityPenrithAustralia
  2. 2.Faculty of Applied Health Sciences and Faculty of Mathematics and ScienceBrock UniversitySt CatharinesCanada

Personalised recommendations