Considerations for Farm Animal Proteomic Experiments: An Introductory View Gel-Based Versus Non-gel-Based Approaches

  • John D. Lippolis
  • Jarlath E. Nally


Preparing for a proteomic experiment will require a number of important decisions. Because of the complexity of most samples, one of the first important decisions is how to separate proteins prior to analysis by the mass spectrometer. There are two basic approaches; the first approach is gel-based electrophoresis that typically separate proteins based on molecular weight and/or isoelectric point. The second approach is non-gel-based or liquid chromatography that typically separates peptides based on hydrophobicity. We discuss some of the pros and cons of each separation method to allow the proper alignment of research objectives and scientific methodologies.


  1. Abdallah C, Dumas-Gaudot E, Renaut J et al (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics 2012:1–17. CrossRefGoogle Scholar
  2. Baggerman G, Vierstraete E, De Loof A, Schoofs L (2005) Gel-based versus gel-free proteomics: a review. Comb Chem High Throughput Screen 8:669–677CrossRefPubMedGoogle Scholar
  3. Bandow JE (2010) Comparison of protein enrichment strategies for proteome analysis of plasma. Proteomics 10:1416–1425. CrossRefPubMedGoogle Scholar
  4. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T et al (2007) Methods for samples preparation in proteomic research. J Chromatogr B 849:1–31. CrossRefGoogle Scholar
  5. Brunet S, Thibault P, Gagnon E et al (2003) Organelle proteomics: looking at less to see more. Trends Cell Biol 13:629–638CrossRefPubMedGoogle Scholar
  6. Cho WCS (2007) Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 5:77–85. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Elsik CG, Tellam RL, Worley KC et al (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Han X, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Huber LA, Pfaller K, Vietor I (2003) Organelle proteomics: implications for subcellular fractionation in proteomics. Circ Res 92:962–968. CrossRefPubMedGoogle Scholar
  10. Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263CrossRefPubMedGoogle Scholar
  11. Jafari M, Primo V, Smejkal GB et al (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis 33:2516–2526. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kelemen O, Convertini P, Zhang Z et al (2013) Function of alternative splicing. Gene 514:1–30. CrossRefPubMedGoogle Scholar
  13. Kim M-S, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509:575–581. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lippolis JD, Bayles DO, Reinhardt TA (2009) Proteomic changes in Escherichia coli when grown in fresh milk versus laboratory media. J Proteome 8:149–158. CrossRefGoogle Scholar
  15. Lippolis JD, White FM, Marto JA et al (2002) Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol 169:5089–5097CrossRefPubMedGoogle Scholar
  16. Monahan AM, Callanan JJ, Nally JE (2008) Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76:4952–4958. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Monteoliva L, Albar JP (2004) Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3:220–239. CrossRefPubMedGoogle Scholar
  18. Nagaraj N, Kulak NA, Cox J et al (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol Cell Proteomics 11:M111.013722. CrossRefPubMedGoogle Scholar
  19. Nally JE, Whitelegge JP, Aguilera R et al (2005) Purification and proteomic analysis of outer membrane vesicles from a clinical isolate of Leptospira interrogans serovar Copenhageni. Proteomics 5:144–152. CrossRefPubMedGoogle Scholar
  20. Reinhardt TA, Lippolis JD (2006) Bovine milk fat globule membrane proteome. J Dairy Res 73:406–416. CrossRefPubMedGoogle Scholar
  21. Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169. CrossRefPubMedGoogle Scholar
  22. Schuller S, Sergeant K, Renaut J et al (2015) Comparative proteomic analysis of lung tissue from guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization. J Proteome 122:55–72. CrossRefGoogle Scholar
  23. Shi T, Song E, Nie S et al (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16:2160–2182. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Stasyk T, Huber LA (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4:3704–3716. CrossRefPubMedGoogle Scholar
  25. Steen H, Mann M (2004) The ABC“s (and XYZ”s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711. CrossRefPubMedGoogle Scholar
  26. Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9:499–519. CrossRefGoogle Scholar
  27. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247. CrossRefPubMedGoogle Scholar
  28. Whiteaker JR, Zhang H, Eng JK et al (2007) Head-to-head comparison of serum fractionation techniques. J Proteome Res 6:828–836. CrossRefPubMedGoogle Scholar
  29. Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587. CrossRefPubMedGoogle Scholar
  30. Witchell TD, Eshghi A, Nally JE et al (2014) Post-translational modification of LipL32 during Leptospira interrogans infection. PLoS Negl Trop Dis 8:e3280. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yang X, Coulombe-Huntington J, Kang S et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164:805–817. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yates JR (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19.<1::AID-JMS624>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  33. Zolotarjova N, Mrozinski P, Chen H, Martosella J (2008) Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum. J Chromatogr A 1189:332–338. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service (ARS)United States Department of Agriculture (USDA)AmesUSA
  2. 2.Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service (ARS)United States Department of Agriculture (USDA)AmesUSA

Personalised recommendations