Advertisement

Dark Energy

  • Ahmad Borzou
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Soon after Einstein published his general theory of relativity, in order to derive a static solution out of his equations, he modified the equations by adding  Λ, the cosmological constant term [1]. This extra term could be used to explain the observations of that time that were indicating a non-evolving universe. Although Einstein may not have been aware of this fact originally, this cosmological constant can be interpreted as the vacuum energy density [2], which generates a repulsive force that can balance the attractive gravitational forces due to matter and hence grant a static, although extremely unstable, universe. The cosmological term seemed unnecessary when Hubble observed the cosmic expansion of the universe [3], and Friedmann [4] and Lemaitre [5] developed a model that could well explain the new data. Therefore, Einstein and de Sitter [6] accepted a spatially flat, matter dominated, homogeneous, isotropic, and expanding universe as the cosmological model where the matter density (ρ m ) is equal to the critical density (ρ c ), \(\Omega _m \equiv \frac {\rho _m}{\rho _c} = 1\), and there is no room for other types of energy. In the 1990s, two independent groups of cosmologists [7, 8] reported direct evidence of cosmic expansion with a positive rate from studies of supernova explosions, although other studies of the age of the universe together with cosmic microwave background (CMB) observations [9] were already indicating the shortcomings of the Einstein–de Sitter model.

References

  1. 1.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915, 844 (1915)Google Scholar
  2. 2.
    Y.B. Zeldovich, Sov. Phys. Uspekhi 11, 381 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929)ADSCrossRefGoogle Scholar
  4. 4.
    A. Friedmann, On the curvature of space. Z. Phys. 10, 377 (1922)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Lemaitre, Annales de la Societe Scietifique de Bruxelles 47, 49 (1927)ADSGoogle Scholar
  6. 6.
    A. Einstein, W. de Sitter, Proc. Natl. Acad. Sci. 18, 213 (1932)ADSCrossRefGoogle Scholar
  7. 7.
    A.G. Riess et al., [Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998)Google Scholar
  8. 8.
    S. Perlmutter et al., [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999)Google Scholar
  9. 9.
    C.L. Bennett, A.J. Banday, K.M. Górski, G. Hinshaw, P. Jackson, P. Keegstra, A. Kogut, G.F. Smoot, D.T. Wilkinson, E.L. Wright, Astrophys. J. Lett. 464, L1 (1996)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters (2015) [arXiv:1502.01589]Google Scholar
  12. 12.
    N. Suzuki et al., [The Supernova Cosmology Project], Astrophys. J. 746, 85 (2012) [arXiv:1105.3470]Google Scholar
  13. 13.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)Google Scholar
  14. 14.
    M.J. Sparnaay, Nature 180, 334 (1957)ADSCrossRefGoogle Scholar
  15. 15.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    B. Ratra, P. Peebles, Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998) [arXiv:astro-ph/9708069]ADSCrossRefGoogle Scholar
  18. 18.
    I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999) [arXiv:astro-ph/9807002]ADSCrossRefGoogle Scholar
  19. 19.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989) [arXiv:astro-ph/0005265]ADSCrossRefGoogle Scholar
  20. 20.
    R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005) [arXiv:astro-ph/0505494]ADSCrossRefGoogle Scholar
  21. 21.
    C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999) [arXiv:hep-th/9904075]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000) [arXiv:astro-ph/0004134]ADSCrossRefGoogle Scholar
  23. 23.
    C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001) [arXiv:astro-ph/0006373]ADSCrossRefGoogle Scholar
  24. 24.
    E. Babichev, V.F. Mukhanov, A. Vikman, JHEP 02, 101 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C. Wetterich, Astron. Astrophys. 301, 321 (1995) [arXiv:hep-th/9408025]ADSGoogle Scholar
  26. 26.
    L. Amendola, Phys. Rev. D 62, 043511 (2000) [arXiv:astro-ph/9908023]ADSCrossRefGoogle Scholar
  27. 27.
    S. Das, P.S. Corasaniti, J. Khoury, Phys. Rev. D 73, 083509 (2006) [arXiv:astro-ph/0510628]ADSCrossRefGoogle Scholar
  28. 28.
    S. Capozziello, S. Carloni, A. Troisi, Recent Res. Dev. Astron. Astrophys. 1, 625 (2003) [arXiv:astro-ph/0303041]Google Scholar
  29. 29.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Actions in Quantum Gravity (IOP, Bristol, 1992)Google Scholar
  31. 31.
    A. Codello, R. Percacci, Phys. Rev. Lett. 97, 221301 (2006)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726]ADSCrossRefGoogle Scholar
  33. 33.
    G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000) [arXiv:hep-th/0005016]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Dubovsky, V. Rubakov, Phys. Rev. D 67, 104014 (2003) [arXiv:hep-th/0212222]ADSCrossRefGoogle Scholar
  35. 35.
    C. de Rham, G. Dvali, S. Hofmann, J. Khoury, O. Pujolas et al., Phys. Rev. Lett. 100, 251603 (2008) [arXiv:0711.2072]ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197]ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J.Q. Xia, Phys. Rev. D 79, 103527 (2009) [arXiv:0907.4860]ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmad Borzou
    • 1
  1. 1.EUCOS-CASPAR, Physics DepartmentBaylor UniversityWacoUSA

Personalised recommendations