Advertisement

Efficient CCA2 Secure Revocable Multi-authority Large-Universe Attribute-Based Encryption

  • Dawei Li
  • Jie Chen
  • Jianwei LiuEmail author
  • Qianhong WuEmail author
  • Weiran Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10581)

Abstract

We propose an efficient revocable multi-authority large-universe attribute-based encryption system deployed to cloud storage service, which supports multiple authorities issuing secret keys for users with attributes from different domains in considering of privacy preserving and efficiency. In addition, it supports large-universe attributes allowing attributes denoted as any string in a large universe. Furthermore, it realizes an efficient revocation of attributes with less computation of key updating and data re-encryption. For this system, we define the security notion named indistinguishability against selective authority and access policy and statically chosen ciphertext attacks (IND-sAA-sCCA2), which can meet the majority of current security needs. Finally, a concrete scheme supporting ciphertext verifiability is constructed on prime-order groups to improve computing efficiency. We prove that the scheme satisfies IND-sAA-sCCA2 security with the help of a Chameleon hash function.

Notes

Acknowledgment

This paper is supported by the Natural Science Foundation of China through projects 61672083, 61370190, 61772538, 61532021, 61472429, 61402029, and 61702028, by the National Cryptography Development Fund through project MMJJ20170106, by the planning fund project of ministry of education through project 12YJAZH136 and by the Beijing Natural Science Foundation through project 4132056.

References

  1. 1.
    Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-effective authentic and anonymous data sharing with forward security. IEEE Trans. Comput. 64(4), 971–983 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  3. 3.
    Yao, X., Han, X., Du, X., Zhou, X.: A lightweight multicast authentication mechanism for small scale iot applications. IEEE Sens. J. 13(10), 3693–3701 (2013)CrossRefGoogle Scholar
  4. 4.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_28 CrossRefGoogle Scholar
  5. 5.
    Xiao, Y., Chen, H., Du, X., Guizani, M.: Stream-based cipher feedback mode in wireless error channel. IEEE Trans. Wirel. Commun. 8(2), 622–626 (2009)CrossRefGoogle Scholar
  6. 6.
    Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47854-7_19 CrossRefGoogle Scholar
  7. 7.
    Du, X., Xiao, Y., Guizani, M., Chen, H.: An effective key management scheme for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with efficient updates. IEEE Trans. Dependable Sec. Comput. 12(5), 546–556 (2015)CrossRefGoogle Scholar
  9. 9.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, Alexandria, VA, USA, October 30–November 3, pp. 89–98 (2006)Google Scholar
  10. 10.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: S&P 2007, Oakland, California, USA, 20–23 May 2007, pp. 321–334 (2007)Google Scholar
  11. 11.
    Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 456–465 (2007)Google Scholar
  12. 12.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 195–203 (2007)Google Scholar
  13. 13.
    Liang, X., Cao, Z., Lin, H., Xing, D.: Provably secure and efficient bounded ciphertext policy attribute based encryption. In: ASIACCS 2009, Sydney, Australia, 10–12 March 2009, pp. 343–352 (2009)Google Scholar
  14. 14.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Proceedings of PKC 2011, Taormina, Italy, 6–9 March 2011, pp. 53–70 (2011)Google Scholar
  15. 15.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  16. 16.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  17. 17.
    Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: CCS 2009, Chicago, Illinois, USA, 9–13 November 2009, pp. 121–130 (2009)Google Scholar
  18. 18.
    Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89754-5_33 CrossRefGoogle Scholar
  19. 19.
    Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00730-9_2 CrossRefGoogle Scholar
  20. 20.
    Li, D., Liu, J., Liu, W.: Secure and anonymous data transmission system for cluster organised space information network. In: SmartCloud 2016, New York, NY, USA, 18–20 November 2016, pp. 228–233 (2016)Google Scholar
  21. 21.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_31 CrossRefGoogle Scholar
  22. 22.
    Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority ciphertext-policy attribute-based encryption without random oracles. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23822-2_16 CrossRefGoogle Scholar
  23. 23.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_30 CrossRefGoogle Scholar
  24. 24.
    Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_20 CrossRefGoogle Scholar
  25. 25.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 463–474 (2013)Google Scholar
  26. 26.
    Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Proceedings of IMA 2009, Cirencester, UK, 15–17 December 2009, pp. 278–300 (2009)Google Scholar
  27. 27.
    Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Department of Computer Science, Technion (1996)Google Scholar
  28. 28.
    Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_13 CrossRefGoogle Scholar
  29. 29.
    Tsuchida, H., Nishide, T., Okamoto, E., Kim, K.: Revocable decentralized multi-authority functional encryption. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 248–265. Springer, Cham (2016). doi: 10.1007/978-3-319-49890-4_14 CrossRefGoogle Scholar
  30. 30.
    Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Farràs, O., Manjón, J.A.: Contributory broadcast encryption with efficient encryption and short ciphertexts. IEEE Trans. Comput. 65(2), 466–479 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_13 CrossRefGoogle Scholar
  32. 32.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19379-8_5 CrossRefGoogle Scholar
  33. 33.
    Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24316-5_8 CrossRefGoogle Scholar
  34. 34.
    Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31448-3_25 CrossRefGoogle Scholar
  35. 35.
    Liu, W., Liu, J., Wu, Q., Qin, B., Zhou, Y.: Practical direct chosen ciphertext secure key-policy attribute-based encryption with public ciphertext test. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 91–108. Springer, Cham (2014). doi: 10.1007/978-3-319-11212-1_6 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina

Personalised recommendations