Enhancing Process Models to Improve Business Performance: A Methodology and Case Studies

  • Marcus DeesEmail author
  • Massimiliano de Leoni
  • Felix Mannhardt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10573)


Process mining is not only about discovery and conformance checking of business processes. It is also focused on enhancing processes to improve the business performance. While from a business perspective this third main stream is definitely as important as the others if not even more, little research work has been conducted. The existing body of work on process enhancement mainly focuses on ensuring that the process model is adapted to incorporate behavior that is observed in reality. It is less focused on improving the performance of the process. This paper reports on a methodology that creates an enhanced model with an improved performance level. The enhancements of the model limit incorporated behavior to only those parts that do not violate any business rules. Finally, the enhanced model is kept as close to the original model as possible. The practical relevance and feasibility of the methodology is assessed through two case studies. The result shows that the process models improved through our methodology, in comparison with state-of the art techniques, have improved KPI levels while still adhering to the desired prescriptive model.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016)Google Scholar
  2. 2.
    Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Inform. Syst. 47, 220–243 (2015)CrossRefGoogle Scholar
  3. 3.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)Google Scholar
  4. 4.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev Data Min. Knowl. Discov. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  5. 5.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inform. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  6. 6.
    Kalsing, A.C., do Nascimento, G.S., Iochpe, C., Thom, L.H.: An incremental process mining approach to extract knowledge from legacy systems. In: Proceedings of the 14th IEEE International Enterprise Distributed Object Computing Conference, pp. 79–88. IEEE (2010)Google Scholar
  7. 7.
    Sun, W., Li, T., Peng, W., Sun, T.: Incremental workflow mining with optional patterns and its application to production printing process. Int. J. Intell. Contr. Syst. 12(1), 44–55 (2007)Google Scholar
  8. 8.
    Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Data-Driven Process Discovery and Analysis. Proceedings of the Second International Symposium Data-Driven Process Discovery and Analysis (SIMPDA 2012). LNBIP, vol. 162, pp. 44–59. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Schunselaar, D.M.: Configurable process trees: elicitation, analysis, and enactment. Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2016)Google Scholar
  10. 10.
    Polyvyanyy, A., Van der Aalst, W.M.P., Ter Hofstede, A., Wynn, M.: Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. (TOSEM) 25(4), 28 (2016)Google Scholar
  11. 11.
    Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process variants using a heuristic approach. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03848-8_23 CrossRefGoogle Scholar
  12. 12.
    Gambini, M., La Rosa, M., Migliorini, S., Hofstede, A.H.M.: Automated error correction of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23059-2_14 CrossRefGoogle Scholar
  13. 13.
    Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85758-7_12 CrossRefGoogle Scholar
  14. 14.
    Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inform. Syst. 38(4), 585–605 (2013)CrossRefGoogle Scholar
  15. 15.
    International Organization for Standardization: ISO 13053:2011 quantitative methods in process improvement - Six Sigma - part 1: DMAIC methodology, September 2011Google Scholar
  16. 16.
    Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21640-4_30 CrossRefGoogle Scholar
  17. 17.
    Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific workflows for process mining: building blocks, scenarios, and implementation. STTT 18(6), 607–628 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marcus Dees
    • 1
    • 2
    Email author
  • Massimiliano de Leoni
    • 2
  • Felix Mannhardt
    • 2
  1. 1.Uitvoeringsinstituut Werknemersverzekeringen (UWV)AmsterdamThe Netherlands
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations