Semantic OLAP Patterns: Elements of Reusable Business Analytics

  • Christoph G. SchuetzEmail author
  • Simon Schausberger
  • Ilko Kovacic
  • Michael Schrefl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10574)


Online analytical processing (OLAP) allows domain experts to gain insights into a subject of analysis. Domain experts are often casual users who interact with OLAP systems using standardized reports covering most of the domain experts’ information needs. Analytical questions not answered by standardized reports must be posed as ad hoc queries. Casual users, however, are typically not familiar with OLAP data models and query languages, preferring to formulate questions in business terms. Experience from industrial research projects shows that ad hoc queries frequently follow certain patterns which can be leveraged to provide assistance to domain experts. For example, queries in many domains focus on the relationships between a set of interest and a set of comparison. This paper proposes a pattern definition framework which allows for a machine-readable representation of recurring, domain-independent patterns in OLAP. Semantic web technologies serve for the definition of OLAP patterns as well as the data models and business terms used to instantiate the patterns. Ad hoc query composition then amounts to selecting an appropriate pattern and instantiating that pattern by reference to semantic predicates that encode business terms. Pattern instances eventually translate into a target language, e.g., SQL.


Design patterns Multidimensional model Ad hoc queries Semantic web technologies Business terms 



The research reported in this work was funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under program “Production of the Future”, Grant No. 848610.


  1. 1.
    Alexander, C., Ishikawa, S., Silverstein, M., i Ramió, J.R., Jacobson, M., Fiksdahl-King, I.: A Pattern Language. Oxford University Press, New York (1977)Google Scholar
  2. 2.
    Allen, G., Parsons, J.: Is query reuse potentially harmful? anchoring and adjustment in adapting existing database queries. Inf. Syst. Res. 21(1), 56–77 (2010)CrossRefGoogle Scholar
  3. 3.
    Böhnlein, M., Ulbrich-vom Ende, A., Plaha, M.: Visual specification of multidimensional queries based on a semantic data model. In: von Maur, E., Winter, R. (eds.) Vom Data Warehouse zum Corporate Knowledge Center, pp. 379–397. Physica, Heidelberg (2002). doi: 10.1007/978-3-642-57491-7_22 CrossRefGoogle Scholar
  4. 4.
    Coplien, J.O.: Software patterns. SIGS Management Briefings Series (1996)Google Scholar
  5. 5.
    Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Development. Pearson Prentice Hall, London (2005)Google Scholar
  6. 6.
    Eckerson, W.W.: Pervasive business intelligence: techniques and technologies to deploy BI on an enterprise scale. TDWI Best Practices Report (2008)Google Scholar
  7. 7.
    Eckerson, W.W.: TDWI checklist report: Self-service BI. TDWI Research (2009)Google Scholar
  8. 8.
    Etcheverry, L., Vaisman, A.A.: QB4OLAP: a new vocabulary for OLAP cubes on the semantic web. In: Proceedings of the Third International Conference on Consuming Linked Data, pp. 27–38 (2012)Google Scholar
  9. 9.
    Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley Professional, Reading (1997)Google Scholar
  10. 10.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: abstraction and reuse of object-oriented design. In: Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 406–431. Springer, Heidelberg (1993). doi: 10.1007/3-540-47910-4_21 Google Scholar
  11. 11.
    Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for OLAP discovery driven analysis. In: Proceedings of the ACM Twelfth International Workshop on Data Warehousing and OLAP, pp. 81–88. ACM (2009)Google Scholar
  12. 12.
    Hay, D.C.: Data Model Patterns: Conventions of Thought. Dorset House, New York (1996)Google Scholar
  13. 13.
    ISO/IEC: 14977: 1996 (E) - information technology - syntactic metalanguage - Extended BNF. International Standard (1996)Google Scholar
  14. 14.
    Neuböck, T., Neumayr, B., Schrefl, M., Schütz, C.: Ontology-driven business intelligence for comparative data analysis. In: Zimányi, E. (ed.) eBISS 2013. LNBIP, vol. 172, pp. 77–120. Springer, Cham (2014). doi: 10.1007/978-3-319-05461-2_3 CrossRefGoogle Scholar
  15. 15.
    Sapia, C.: On modeling and predicting query behavior in OLAP systems. In: Gatziu, S., Jeusfeld, M.A., Staudt, M., Vassiliou, Y. (eds.) DMDW 1999. CEUR Workshop Proceedings, vol. 19. (1999)Google Scholar
  16. 16.
    Schuetz, C.G., Neumayr, B., Schrefl, M., Neuböck, T.: Reference modeling for data analysis: the BIRD approach. Int. J. Coop. Inf. Syst. 25(2), 309–344 (2016)CrossRefGoogle Scholar
  17. 17.
    Seriai, A., Oussalah, C.: A reuse based object-oriented framework towards flexible formulation of complex queries. In: Larsen, H.L., Andreasen, T., Christiansen, H., Kacprzyk, J., Zadrożny, S. (eds.) Flexible Query Answering Systems. Advances in Soft Computing, vol. 7, pp. 128–137. Physica, Heidelberg (2001). doi: 10.1007/978-3-7908-1834-5_12
  18. 18.
    Theodoratos, D.: Exploiting hierarchical clustering in evaluating multidimensional aggregation queries. In: Proceedings of the 6th ACM International Workshop on Data Warehousing and OLAP, pp. 63–70 (2003)Google Scholar
  19. 19.
    Unwin, A.: Patterns of data analysis. J. Korean Stat. Soc. 30(2), 219–230 (2001)MathSciNetGoogle Scholar
  20. 20.
    Vaisman, A., Zimányi, E.: Data Warehouse Systems. Springer, Berlin (2014)CrossRefGoogle Scholar
  21. 21.
    W3C: The RDF Data Cube Vocabulary - W3C Recommendation 16 January 2014.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christoph G. Schuetz
    • 1
    Email author
  • Simon Schausberger
    • 1
  • Ilko Kovacic
    • 1
  • Michael Schrefl
    • 1
  1. 1.Johannes Kepler University LinzLinzAustria

Personalised recommendations