Semantic Modeling and Inference with Episodic Organization for Managing Personal Digital Traces

(Short Paper)
  • Varvara Kalokyri
  • Alexander BorgidaEmail author
  • Amélie Marian
  • Daniela Vianna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10574)


Many individuals generate a flood of personal digital traces (e.g., emails, social media posts, web searches, calendars) as a byproduct of their daily activities. To facilitate querying and to support natural retrospective and prospective memory of these, a key problem is to integrate them in some sensible manner. For this purpose, based on research in the cognitive sciences, we propose a conceptual modeling language whose novel features include (i) the super-properties “who, what, when, where, why, how” applied uniformly to both documents and autobiographic events; and (ii) the ability to describe prototypical plans (“scripts”) for common everyday events, which in fact generate personal digital documents as traces. The scripts and wh-questions support the hierarchical organization and abstraction of the original data, thus helping end-users query it. We illustrate the use of our language through examples, provide formal semantics, and present an algorithm to recognize script instances.


Personal digital traces Conceptual model Scripts Plan recognition 


  1. 1.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1), 70–118 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A survey of semantics-based approaches for context reasoning in ambient intelligence. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007. CCIS, vol. 11, pp. 14–23. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85379-4_3 CrossRefGoogle Scholar
  3. 3.
    Borgida, A., Devanbu, P.T.: Adding more “DL” to IDL: towards more knowledgeable component inter-operability. In: Proceedings of ICSE 1999, pp. 378–387 (1999)Google Scholar
  4. 4.
    Bush, V.: As We May Think. The Atlantic Monthly, July 1945Google Scholar
  5. 5.
    Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In: AAAI 1994, pp. 1123–1128 (1994)Google Scholar
  6. 6.
    Fillmore, C.J., Johnson, C.R., Petruck, M.R.: Background to framenet. Int. J. Lexicogr. 16(3), 235–250 (2003)CrossRefGoogle Scholar
  7. 7.
    Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree grammars. Artif. Intell. 173(11), 1101–1132 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldman, R.P., Geib, C.W., Kautz, H.A., Asfour, T.: Plan recognition (dagstuhl seminar 11141). Dagstuhl Rep. 1(4), 1–22 (2011)Google Scholar
  9. 9.
    Kalokyri, V., Borgida, A., Marian, A., Vianna, D.: Integration and exploration of connected personal digital traces. In: Proceedings of ExploreDB 2017 Workshop, pp. 1–6. ACM (2017)Google Scholar
  10. 10.
    Karger, D., et al.: Haystack: a general-purpose information management tool for end users based on semistructured data. In: Proceedings of CIDR 2005, pp. 13–26 (2005)Google Scholar
  11. 11.
    Katifori, V., Poggi, A., Scannapieco, M., Catarci, T., Ioannidis, Y.: OntoPIM: how to rely on a personal ontology for Personal Information Management. In: ISWC 2005 Workshop on The Semantic Desktop, pp. 258–262 (2005)Google Scholar
  12. 12.
    Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43 (2014)CrossRefGoogle Scholar
  13. 13.
    Schank, R., Abelson, R.: Scripts, plans, and knowledge. In: IJCAI 1975, pp. 151–157 (1975)Google Scholar
  14. 14.
    Shafer, G.: The combination of evidence. Int. J. Intell. Syst. 1(3), 155–179 (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tulving, E.: Episodic memory: from mind to brain. Annu. Rev. Psych. 53, 1–25 (2002)CrossRefGoogle Scholar
  16. 16.
    Williams, H.L., Conway, M.A., Cohen, G.: Autobiographical memory. In: Cohen, G., Conway, M.A. (eds.) Memory in The Real World, chap. 3, pp. 21–90. Psychology Press (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Varvara Kalokyri
    • 1
  • Alexander Borgida
    • 1
    Email author
  • Amélie Marian
    • 1
  • Daniela Vianna
    • 1
  1. 1.Department of Computer ScienceRutgers UniversityNew BrunswickUSA

Personalised recommendations