An Iterated Local Search Framework with Adaptive Operator Selection for Nurse Rostering

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10556)

Abstract

Considerable attention has been paid to selective hyper-heuristic frameworks for addressing computationally hard scheduling problems. By using selective hyper-heuristics, we can derive benefits from the strength of low level heuristics and their components at different stages of the heuristic search. In this paper, a simple, general and effective selective hyper heuristic is presented. We introduce an iterated local search based hyper-heuristic framework that incorporates the adaptive operator selection scheme to learn through the search process. The considered iterative approach employs an action selection model to decide the perturbation strategy to apply in each step and a credit assignment module to score its performance. The designed framework allows us to employ any action selection model and credit assignment mechanism used in the literature. Empirical results and an analysis of six different action selection models against state-of-the-art approaches, across 39 problem instances, highlight the significant potential of the proposed selection hyper-heuristics. Further analysis on the adaptive behavior of the model suggests that two of the six models are able to learn the best performing perturbation strategy, resulting in significant performance gains.

Keywords

Nurse rostering Personnel scheduling Hyper-heuristics Action selection models 

References

  1. 1.
    Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 457–474. Springer, Boston (2003). doi: 10.1007/0-306-48056-5_16 CrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)CrossRefGoogle Scholar
  3. 3.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 449–468. Springer, Boston (2010). doi: 10.1007/978-1-4419-1665-5_15 CrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Asta, S., Özcan, E., Curtois, T.: A tensor based hyper-heuristic for nurse rostering. Knowl. Based Syst. 98, 185–199 (2016)CrossRefGoogle Scholar
  7. 7.
    Lü, Z., Hao, J.K.: Adaptive neighborhood search for nurse rostering. Eur. J. Oper. Res. 218(3), 865–876 (2012)CrossRefGoogle Scholar
  8. 8.
    Rae, C., Pillay, N.: Investigation into an evolutionary algorithm hyperheuristic for the nurse rostering problem. In: Proceedings of the 10th International Conference on the Practice and Theory of Automated, PATAT 2014, pp. 527–532 (2014)Google Scholar
  9. 9.
    Anwar, K., Awadallah, M.A., Khader, A.T., Al-betar, M.A.: Hyper-heuristic approach for solving nurse rostering problem. In: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), pp. 1–6, December 2014Google Scholar
  10. 10.
    Burke, E.K., Curtois, T.: New approaches to nurse rostering benchmark instances. Eur. J. Oper. Res. 237(1), 71–81 (2014)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bai, R., Burke, E., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary approach to the nurse rostering problem. IEEE TEVC 14(4), 580–590 (2010)Google Scholar
  12. 12.
    Burke, E.K., Li, J., Qu, R.: A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. Eur. J. Oper. Res. 203(2), 484–493 (2010)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hidden Markov model. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 417–424. ACM, New York (2015)Google Scholar
  14. 14.
    Chan, C.Y., Xue, F., Ip, W.H., Cheung, C.F.: A hyper-heuristic inspired by pearl hunting. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 349–353. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34413-8_26 CrossRefGoogle Scholar
  15. 15.
    Adriaensen, S., Brys, T., Nowé, A.: Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 1303–1310. ACM (2014)Google Scholar
  16. 16.
    Mısır, M., Verbeeck, K., Causmaecker, P., Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 461–466. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34413-8_45 Google Scholar
  17. 17.
  18. 18.
    Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Operations research/Computer Science Interfaces, vol. 45. Springer, Boston (2008). doi: 10.1007/978-0-387-09624-7 MATHGoogle Scholar
  19. 19.
    Fialho, A.: Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay, France, December 2010Google Scholar
  20. 20.
    Burke, E.K., Curtois, T., Post, G., Qu, R., Veltman, B.: A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. Eur. J. Oper. Res. 188(2), 330–341 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A time predefined variable depth search for nurse rostering. INFORMS J. Comput. 25(3), 411–419 (2013)CrossRefGoogle Scholar
  22. 22.
    CHeSC 2014: The second cross-domain heuristic search challenge (2014). http://www.hyflex.org/chesc2014/, http://www.hyflex.org/. Accessed 25 Mar 2015
  23. 23.
    Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)Google Scholar
  24. 24.
    Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 77–90. Springer, UK (2007). doi: 10.1007/978-3-540-69432-8_4 CrossRefGoogle Scholar
  25. 25.
    Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)Google Scholar
  26. 26.
    Munoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015)CrossRefGoogle Scholar
  27. 27.
    Fialho, A., Costa, L.D., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64 (2010)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Why parameter control mechanisms should be benchmarked against random variation. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 349–355, June 2013Google Scholar
  29. 29.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)CrossRefMATHGoogle Scholar
  30. 30.
    Banerjea-Brodeur, M.: Selection hyper-heuristics for healthcare scheduling. Ph.D. thesis, University of Nottingham, UK, June 2013Google Scholar
  31. 31.
    Asta, S., Özcan, E., Parkes, A.J.: Batched mode hyper-heuristics. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 404–409. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-44973-4_43 CrossRefGoogle Scholar
  32. 32.
    Ochoa, et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29124-1_12
  33. 33.
    Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, 3rd edn. Wiley, Hoboken (2013)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations