Advertisement

A New Local Search for the p-Center Problem Based on the Critical Vertex Concept

  • Daniele Ferone
  • Paola Festa
  • Antonio Napoletano
  • Mauricio G. C. Resende
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10556)

Abstract

For the p-center problem, we propose a new smart local search based on the critical vertex concept and embed it in a GRASP framework. Experimental results attest the robustness of the proposed search procedure and confirm that for benchmark instances it converges to optimal or near/optimal solutions faster than the best known state-of-the-art local search.

Notes

Acknowledgements

This work has been realized thanks to the use of the S.Co.P.E. computing infrastructure at the University of Napoli FEDERICO II.

References

  1. 1.
    Beasley, J.: A note on solving large \(p\)-median problems. Eur. J. Oper. Res. 21, 270–273 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Coffin, M., Saltzman, M.: Statistical analysis of computational tests of algorithms and heuristics. INFORMS J. Comput. 12(1), 24–44 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Daskin, M.: Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Davidović, T., Ramljak, D., Šelmić, M., Teodorović, D.: Bee colony optimization for the \(p\)-center problem. Comput. Oper. Res. 38(10), 1367–1376 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dyer, M., Frieze, A.: A simple heuristic for the \(p\)-centre problem. Oper. Res. Lett. 3(6), 285–288 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Festa, P., Resende, M.: GRASP: an annotated bibliography. In: Ribeiro, C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Academic Publishers, London (2002)CrossRefGoogle Scholar
  9. 9.
    Festa, P., Resende, M.: An annotated bibliography of GRASP - part I: algorithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Festa, P., Resende, M.: An annotated bibliography of GRASP - part II: applications. Int. Trans. Oper. Res. 16(2), 131–172 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Goldengorin, B., Kocheturov, A., Pardalos, P.M.: A pseudo-boolean approach to the market graph analysis by means of the p-median model. In: Aleskerov, F., Goldengorin, B., Pardalos, P.M. (eds.) Clusters, Orders, and Trees: Methods and Applications. SOIA, vol. 92, pp. 77–89. Springer, New York (2014). doi: 10.1007/978-1-4939-0742-7_5 Google Scholar
  12. 12.
    Goldengorin, B., Krushinsky, D., Pardalos, P.M.: Application of the PMP to cell formation in group technology. In: Goldengorin, B., Krushinsky, D., Pardalos, P.M. (eds.) Cell Formation in Industrial Engineering. SOIA, vol. 79, pp. 75–99. Springer, New York (2013). doi: 10.1007/978-1-4614-8002-0_3 CrossRefGoogle Scholar
  13. 13.
    Hakimi, S.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hansen, P., Mladenović, N.: Variable neighborhood search for the \(p\)-median. Locat. Sci. 5(4), 207–226 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hochbaum, D., Shmoys, D.: A best possible heuristic for the \(k\)-Center problem. Math. Oper. Res. 10(2), 180–184 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. Part I: the \(p\)-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. Part II: the \(p\)-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Martinich, J.S.: A vertex-closing approach to the \(p\)-center problem. Nav. Res. Logist. 35(2), 185–201 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Minieka, E.: The \(m\)-center problem. SIAM Rev. 12(1), 138–139 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mladenović, N., Labbé, M., Hansen, P.: Solving the \(p\)-center problem with Tabu Search and variable neighborhood search. Networks 42(April), 48–64 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Mladenovic, N., Urosevic, D., Prez-Brito, D., Garca-Gonzlez, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200(1), 14–27 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Pardo, E.G., Mladenovi, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13(5), 2242–2252 (2013)CrossRefGoogle Scholar
  24. 24.
    Reinelt, G.: TSPLIB—A traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Resende, M., Werneck, R.: A hybrid heuristic for the \(p\)-median problem. J. Heuristics 10(1), 59–88 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Salhi, S., Al-Khedhairi, A.: Integrating heuristic information into exact methods: the case of the vertex p-centre problem. J. Oper. Res. Soc. 61(11), 1619–1631 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniele Ferone
    • 1
  • Paola Festa
    • 1
  • Antonio Napoletano
    • 1
  • Mauricio G. C. Resende
    • 2
  1. 1.Department of Mathematics and ApplicationsUniversity of Napoli Federico IINaplesItaly
  2. 2.Mathematical Optimization and PlanningAmazon.comSeattleUSA

Personalised recommendations