Advertisement

Comparing Two Approaches for Solving Constrained Global Optimization Problems

  • Konstantin BarkalovEmail author
  • Ilya Lebedev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10556)

Abstract

In the present study, a method for solving the multiextremal problems with non-convex constrains without the use of the penalty or barrier functions is considered. This index method is featured by a separate accounting for each constraint. The check of the constraint fulfillment sequentially performed in every iteration point is terminated upon the first constraint violation occurs. The results of numerical comparing of the index method with the penalty function one are presented. The comparing has been carried out by means of the numerical solving of several hundred multidimensional multiextremal problems with non-convex constrains generated randomly.

Keywords

Global optimization Multiextremal functions Non-convex constraints 

Notes

Acknowledgments

This study was supported by the Russian Science Foundation, project No 16-11-10150.

References

  1. 1.
    Famularo, D., Pugliese, P., Sergeyev, Y.D.: A global optimization technique for checking parametric robustness. Automatica 35, 1605–1611 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Kvasov, D.E., Menniti, D., Pinnarelli, A., Sergeyev, Y.D., Sorrentino, N.: Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions. Electr. Power Syst. Res. 78(7), 1217–1229 (2008)CrossRefGoogle Scholar
  3. 3.
    Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)CrossRefGoogle Scholar
  4. 4.
    Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: Simos, T.E. (ed.) ICNAAM 2015. AIP Conference Proceedings, vol. 1738 (2016). Article No. 400013Google Scholar
  5. 5.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993)zbMATHGoogle Scholar
  6. 6.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21(3), 317–341 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Strongin, R.G., Sergeyev, Y.D.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Barkalov, K., Ryabov, V., Sidorov, S.: Parallel scalable algorithms with mixed local-global strategy for global optimization problems. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 232–240. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14822-4_26 CrossRefGoogle Scholar
  11. 11.
    Barkalov, K.A., Gergel, V.P.: Multilevel scheme of dimensionality reduction for parallel global search algorithms. In: Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization - OPT-i 2014, pp. 2111–2124 (2014)Google Scholar
  12. 12.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of Xeon Phi coprocessor for solving global optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_31 CrossRefGoogle Scholar
  13. 13.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015. AIP Conference Proceedings, vol. 1738 (2016). Article No. 400006Google Scholar
  15. 15.
    Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gergel, V.: An approach for generating test problems of constrained global optimization. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds.) LION 2017. LNCS, vol. 10556, pp. 314–319. Springer, Cham (2017). doi: 10.1007/978-3-319-69404-7_24 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations