Advertisement

Test Problems for Parallel Algorithms of Constrained Global Optimization

  • Konstantin BarkalovEmail author
  • Roman Strongin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10556)

Abstract

This work considers the problem of building a class of test problems for global optimization algorithms. The authors present an approach to building multidimensional multiextremal problems, which can clearly demonstrate the nature of the best current approximation, regardless of the problems dimensionality. As part of this approach, the objective function and constraints arise in the process of solving an auxiliary approximation problem. The proposed generator allows the problem to be simplified or complicated, which results in changes to its dimensionality and changes in the feasible domain. The generator was tested by building and solving 100 problems using a parallel global optimization index algorithm. The algorithm’s results are presented using different numbers of computing cores, which clearly demonstrate its acceleration and non-redundancy.

Keywords

Global optimization Multiextremal functions Non-convex constraints 

Notes

Acknowledgments

This study was supported by the Russian Science Foundation, project No. 16-11-10150.

References

  1. 1.
    Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Sci. Cybern. 5(1), 2–8 (1969)CrossRefGoogle Scholar
  2. 2.
    Toropov, V.V.: Simulation approach to structural optimization. Struct. Optim. 1, 37–46 (1989)CrossRefGoogle Scholar
  3. 3.
    Shekel, J.: Test functions for multimodal search technique. In: Proceedings of the 5th Princeton Conference on Information Science Systems, pp. 354–359. Princeton University Press, Princeton (1971)Google Scholar
  4. 4.
    Strongin, R.G., Gergel, V.P., Tropichev, A.V.: Globalizer. Investigation of minimizing sequences generated by global search algorithms for univariate functions. User’s guide. Nizhny Novgorod University Press, Nizhny Novgorod (1995)Google Scholar
  5. 5.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristical algorithms for solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel algorithms for global optimization. Optim. Methods Softw. 3, 111–124 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lera, D., Sergeyev, Y.D.: Lipschitz and Holder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Paulavicius, R., Sergeyev, Y., Kvasov, D., Zilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990). doi: 10.1007/3-540-53032-0 zbMATHGoogle Scholar
  17. 17.
    Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization. Springer, New York (1999). doi: 10.1007/978-1-4757-3040-1 CrossRefzbMATHGoogle Scholar
  18. 18.
    Pardalos, P.M., Phillips, A.T., Rosen, J.B.: Topics in Parallel Computing in Mathematical Programming. Science Press, New York (1992)zbMATHGoogle Scholar
  19. 19.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). doi: 10.1007/978-1-4614-8042-6 CrossRefzbMATHGoogle Scholar
  20. 20.
    Gergel, V.P., Kuzmin, M.I., Solovyov, N.A., Grishagin, V.A.: Recognition of surface defects of cold-rolling sheets based on method of localities. Int. Rev. Autom. Control 8(1), 51–55 (2015)Google Scholar
  21. 21.
    Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: Simos, T.E. (ed.) ICNAAM 2015. AIP Conference Proceedings, vol. 1738 (2016). Article No. 400013Google Scholar
  22. 22.
    Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stoch. Search 7, 198–206 (1978). (in Russian)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations