Advertisement

Carbon Sequestration in Temperate Silvopastoral Systems, Argentina

  • Pablo L. PeriEmail author
  • Natalia Banegas
  • Ignacio Gasparri
  • Carlos H. Carranza
  • Belen Rossner
  • Guillermo Martínez Pastur
  • Laura Cavallero
  • Dardo R. López
  • Dante Loto
  • Pedro Fernández
  • Priscila Powel
  • Marcela Ledesma
  • Raúl Pedraza
  • Ada Albanesi
  • Héctor Bahamonde
  • Roxana Paola Eclesia
  • Gervasio Piñeiro
Chapter
Part of the Advances in Agroforestry book series (ADAG, volume 12)

Abstract

Silvopastoral systems (SPS) provide a wide range of non-provisioning ecosystem services including carbon (C) sequestration. Well-managed SPS outperform both grasslands/pastures and forests in terms of C by increasing soil and biomass C storage. In this Chapter, C sequestration information from native forests and tree plantations under silvopastoral management in Argentina is provided. C sequestration at the stand level (including importance of soil, stand age, site quality and crown classes on the magnitude of C pools in above- and below-ground biomass and forest floor pools) and landscape level also are provided. Results highlight the importance of SPS as efficient carbon sink ecosystems. In the Chaco region, a mature forest of Aspidosperma quebracho blanco stored 67.6 Mg C ha−1 and this value decreased 17% when managed under the new guidelines of Forest Management Incorporating Livestock due to the reductions in tree density and shrub cover. In the same region, the soil organic C (100 cm depth) stored in a silvopastoral system ( Prosopis alba trees with Chloris gayana pasture) was higher than in an adjacent grazing beef cattle pasture (84.7 vs. 64.6 Mg C ha−1). The magnitude of the impact of implementing SPS on carbon stocks at the regional level across the Dry Chaco depended largely on the landowner’s decisions and on the initial natural vegetation condition. In the Mesopotamia region, SPS became a promising alternative for soil organic carbon storage and wood production simultaneously. In Patagonia, the total C stored in the SPS showed an intermediate value of 148.4 Mg C ha−1 compared with primary forest and adjacent open grasslands. Ponderosa pine plantation added carbon (65–210 Mg C ha−1) to the Festuca pallescens grasslands ecosystem (2.6 Mg C ha−1) which represents the baseline system under study. C storage in SPS is an important mitigation strategy in the context of rapidly increasing level of CO2 in the atmosphere and its potential effect on global climate change.

Keywords

Carbon stocks Native forests Plantations Silvopastoral systems 

References

  1. Atencia ME (2003) Densidad de maderas (kg/m3) ordenadas por nombre común. INTI-CITEMA. www.inti.gob.ar/maderaymuebles/pdf/densidad_comun.pdf. Accessed 2 Nov 2016. 8pp
  2. Bahamonde H, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2012) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84:345–360CrossRefGoogle Scholar
  3. Barchuk AH, Valiente-Banuet A, Díaz MP (2005) Effect of shrubs and seasonal variability of rainfall on the establishment of Aspidosperma quebracho-blanco in two edaphically contrasting environments. Austral Ecol 30:695–705CrossRefGoogle Scholar
  4. Bathgate A, Revell C, Kingwell R (2009) Identifying the value of pasture improvement using wholefarm modelling. Agric Syst 102:48–57CrossRefGoogle Scholar
  5. Bonino EE (2006) Changes in carbón pools associated with a land-use gradient in the Dry Chaco, Argentina. Forest Ecology and Management 223: 183–189Google Scholar
  6. Britos AH, Barchuk AH (2008) Cambios en la cobertura y en el uso de la tierra en dos sitios del Chaco Arido del Noroeste de Córdoba, Argentina. Agri 25(2):97–110Google Scholar
  7. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, RomeGoogle Scholar
  8. Caballé G, Fernández ME, Gyenge J, Lantschner V, Rusch V, Letourneau F, Borrelli L (2016) Silvopastoral systems based on natural grassland and ponderosa pine in northwestern Patagonia, Argentina. In: Peri PL, Dube F, Varella A (eds) Silvopastoral systems in Southern South America, advances in agroforestry. Springer, London, pp 89–115CrossRefGoogle Scholar
  9. Carranza C, Ledesma M (2005) Sistemas silvopastoriles en el Chaco Árido. IDIA Forestales. Ed INTA, Buenos Aires, pp 240–246Google Scholar
  10. Carranza C, Pietrarelli L, Ledesma M, Balzarini M (2000) Crecimiento de Prosopis flesuosa D. C. en el chaco Árido Argentino, luego de la eliminación del estrato arbustivo. Multequina 9:119–133Google Scholar
  11. Carranza C, Noe L, Ledesma M, Abri A (2012) Efecto del tipo de desmonte sobre la descomposición de pastos nativos e introducidos en el Chaco Arido de la Argentina. Revista RIA 38(1):97–107Google Scholar
  12. Conti G, Pérez-Harguindeguy N, Quétier F, Gorné LD, Jaureguiberry P, Bertone GA, Enrico L, Cuchietti A, Díaz S (2014) Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric Ecosyst Environ 197:68–76CrossRefGoogle Scholar
  13. del Moral R, Walker R, Bakker JP (2007) Insights gained from succession for the restoration of landscape structure and function. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 22–44Google Scholar
  14. Eclesia RP, Jobbagy EG, Jackson RB et al (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251CrossRefPubMedGoogle Scholar
  15. Eclesia RP, Rossner MB, Kimmich G, Piñeiro G (2015) Dinámica del carbono orgánico de suelo en sistemas forestales y silvopastoriles del NE de Corrientes. 3° Congr Nac Sist Silvopastoriles-VIII Congr Int Sist Agroforestales, Iguazu, Argentina, Mayo 7–9, inta.gob.ar/documentos/actas-del-iii-congreso…, pp 631–635Google Scholar
  16. Eclesia RP, Jobbagy EG, Jackson RB, Rizzotto M, Piñeiro G (2016) Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant Soil 409:99. https://doi.org/10.1007/s11104-016-2951-9 CrossRefGoogle Scholar
  17. Ferrando CA, Blanco L, Biurrun F, Recalde D, Ávila R, Orionte E (2013) Efecto del rolado y siembra de Buffel sobre la evolución del estrato graminoso en un arbustal degradado del Chaco Árido. Revista de la FLA Facultad de Agronomía, UNLP, Vol 22, Serie supl.2, La PlataGoogle Scholar
  18. Gaillard de Benítez C (1994) Funciones para estimar el volumen comercial de árboles en dependencia del diámetro y la altura total en cuatro especies del bosque chaqueño seco. Quebracho 2:71–74Google Scholar
  19. Gaillard de Benítez C, Pece M, Juárez de Galíndez M, Maldonado A, Acosta VH, Gómez A (2002) Biomasa aérea de ejemplares de Quebracho blanco (Aspidosperma quebracho blanco) en dos localidades del parque chaqueño seco. Quebracho 9:115–127Google Scholar
  20. Gasparri NI, Grau HR, Manghi E (2008) Carbon pools and emissions from deforestation in extra-tropical forests of northern Argentina between 1900 and 2005. Ecosystems 11:1247–1261CrossRefGoogle Scholar
  21. Gasparri NI, Grau HR, Sacchi LV (2015) Determinants of the spatial distribution of cultivated land in the North Argentine Dry Chaco in a multi-decadal study. J Arid Environ 123:31–39CrossRefGoogle Scholar
  22. Grau HR, Torres R, Gasparri NI, Blendinger PG, Marinaro S, Macchi L (2015) Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. J Arid Environ 123:40–46CrossRefGoogle Scholar
  23. Hoyos LE, Cingolani AM, Zak MR, Vaieretti MV, Gorla DE, Cabido MR (2012) Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci 16:260–271CrossRefGoogle Scholar
  24. Iglesias MR, Barchuk AH (2010) Estimación de la biomasa aérea de seis leguminosas leñosas del Chaco Árido (Argentina). Ecol Austral 20:71–79Google Scholar
  25. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group 1 to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. Juárez de Galindez M, Moglia JG, Giménez AM, Pece M (2006) Comparación de dos modelos de crecimiento de efectos fijos y errores independientes en quebracho blanco. Rev Forestal Venezolana 50(1):65–73Google Scholar
  27. Kreps G, Martínez Pastur G, Peri PL (2012) Cambio climático en Patagonia Sur: escenarios futuros en el manejo de los recursos naturales. Ediciones INTA, Buenos AiresGoogle Scholar
  28. Kunst C, Monti E, Pérez H, Godoy J (2006) Assessment of rangelands of southwestern Santiago del Estero for management and research. J Environ Manag 80:248–265CrossRefGoogle Scholar
  29. Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manag 180:317–333CrossRefGoogle Scholar
  30. Ledesma M, Carranza CA (2009) Competencia entre dos especies de gramíneas y renovales de Prosopis flexuosa. Implicancias en sistemas silvopastoriles del Chaco Arido. In: Actas del I° Congreso Nacional de Sistemas Silvopastoriles, Posadas, 14–16 May 2009, pp 92–103Google Scholar
  31. MAGyP, SAyDS, INTA (2015) Principios y lineamientos nacionales para el manejo de bosques con ganadería integrada en concordancia con la Ley N° 26.331. Convenio MBGI, Buenos Aires. 37 ppGoogle Scholar
  32. Matteucci G, Dore S, Stivanello S, Rebmann C, Buchmann N (2000) Soil respiration in beech and spruce forests in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems, Ecological studies, vol 142. Springer, Berlin, pp 217–236CrossRefGoogle Scholar
  33. Nair PK, Mohan Kumar B, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23CrossRefGoogle Scholar
  34. Namur P, Tessi JM, Avila RE, Rettore HA, Ferrando CA (2014) Buffel grass, generalidades, implantación y manejo parra recuperación de áreas degradadas. INTA, EEA La Rioja. Ed INTA, Buenos Aires. 20 ppGoogle Scholar
  35. Peri PL (2011) Carbon storage in cold temperate ecosystems in Southern Patagonia, Argentina. In: Atazadeh I (ed) Biomass and remote sensing of biomass. InTech Publisher, Croacia, pp 213–226Google Scholar
  36. Peri PL, Gargaglione V, Martínez Pastur G, Lencinas MV (2010) Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manag 260:229–237CrossRefGoogle Scholar
  37. Peri PL, Bahamonde H, Christiansen R (2015) Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions. J Arid Environ 119:1–8CrossRefGoogle Scholar
  38. Peri PL, Dube F, Varella A (2016) Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In: Peri PL, Dube F, Varella A (eds) Silvopastoral systems in southern South America, advances in agroforestry. Springer, London, pp 1–8CrossRefGoogle Scholar
  39. Perpiñal E, Balzarini M, Pietrarelli L, Catalán L (1995) Crecimiento de Prosopis flexuosa en montes naturales del Chaco Árido. Modelización sobre series temporales de ancho de anillos de crecimiento. Investigación Agraria. Sistemas y Recursos Forestales 4(1). Ministerio de Agricultura, Pesca y Alimentación, Buenos AiresGoogle Scholar
  40. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44b:81–99CrossRefGoogle Scholar
  41. Reich PP, Yunjian L, Bradford JB, Poorter H, Perry CH, Oleksyn J (2013) Temperature drives global patterns in forest biomass distribution in leaves, stems and roots. Proc Natl Acad Sci U S A 111(38):13721–13726CrossRefGoogle Scholar
  42. Rusch V, Sarasola M, Corley JC, Schlichter TM (2004) Sustentabilidad de las plantaciones de coníferas introducidas en la región Andino Patagónica: biodiversidad e invasión. Informe final PIA 01/00. INTA, BarilocheGoogle Scholar
  43. Vallejos M, Volante JN, Mosciaro MJ, Vale LM, Bustamante ML, Paruelo JM (2014) Transformation dynamics of the natural cover in the Dry Chaco ecoregion: a plot level geo-database from 1976 to 2012. J Arid Environ 123:3–11CrossRefGoogle Scholar
  44. Vogt KA, Vogt JB (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. In: Root demographics and their efficiencies in sustainable agriculture, grasslands and forest ecosystems. Kluwer Academic Publishers, Dordrecht, pp 687–720CrossRefGoogle Scholar
  45. Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biol Conserv 120:589–598CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pablo L. Peri
    • 1
    • 2
    Email author
  • Natalia Banegas
    • 3
    • 4
  • Ignacio Gasparri
    • 5
  • Carlos H. Carranza
    • 6
  • Belen Rossner
    • 7
  • Guillermo Martínez Pastur
    • 2
  • Laura Cavallero
    • 6
  • Dardo R. López
    • 6
    • 8
  • Dante Loto
    • 9
  • Pedro Fernández
    • 3
  • Priscila Powel
    • 5
  • Marcela Ledesma
    • 6
  • Raúl Pedraza
    • 4
  • Ada Albanesi
    • 10
  • Héctor Bahamonde
    • 1
    • 10
    • 11
    • 12
  • Roxana Paola Eclesia
    • 11
  • Gervasio Piñeiro
    • 12
  1. 1.EEA INTA Santa Cruz-Universidad Nacional de la Patagonia Austral (UNPA)Río GallegosArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.Ciclos BiogeoquímicosIIACS-CIAP-INTA LealesTucumánArgentina
  4. 4.Facultad de Agronomía y Zootecnia de la Universidad Nacional de TucumánSan Miguel de TucumánArgentina
  5. 5.IER-Universidad Nacional de TucumánSan Miguel de TucumánArgentina
  6. 6.Instituto Nacional de Tecnología Agropecuaria (INTA)-Estación Forestal INTA-Villa DoloresCórdobaArgentina
  7. 7.EEA INTA MontecarloMontecarloArgentina
  8. 8.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) - CCT CórdobaCórdobaArgentina
  9. 9.UNSE-CONICETSantiago del EsteroArgentina
  10. 10.FAYA-UNSESantiago del EsteroArgentina
  11. 11.EEA INTA ParanáParanáArgentina
  12. 12.IFEVA-Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations