Skip to main content

Intensive Silvopastoral Systems: Economics and Contribution to Climate Change Mitigation and Public Policies

  • Chapter
  • First Online:
Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty

Abstract

Intensive Silvopastoral Systems (ISPS) are agroforestry arrangements that combine high-density cultivation of fodder shrubs (4000–40,000 plants ha−1) with improved tropical grasses, and trees or palms at densities of 100–600 individuals ha−1. The ISPS were initially developed in Colombia and have expanded to Mexico and Brazil, among other countries. The main fodder shrubs currently used are Leucaena leucocephala and Tithonia diversifolia due to their fast growth, tolerance to heavy grazing by cattle, and reduction in the emissions of greenhouse gases. Among their advantages, ISPS produce more edible dry matter and nutrients per hectare; increase milk or meat production while reducing the need of chemical fertilizers and concentrate feeds, thus improving farm profitability; increase carbon sequestration and reduce methane emissions from enteric fermentation; and improve animal welfare and biodiversity. The present chapter is a review of recent experiences and research findings in ISPS in Latin America and their effect on production efficiency, greenhouse gas emissions, and economic performance. It also reviews the need of public policy and research to improve access to capital, incentives, and extension services in cattle ranching areas to promote ISPS. ISPS are an important tool in supplying beef and dairy products for local and global markets, while also providing environmental services and increasing resilience to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta A, Murgueitio E, Solarte A, Zapata Y (2014) Fomento de sistemas agrosilvopastoriles institucionalmente sostenibles. En: Acosta A, Díaz T (eds) Lineamientos de política para el desarrollo sostenible del sector ganadero. FAO, Roma, pp 88–103

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper No. 12-03. Rome, FAO, http://www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed 03 Feb 2017

  • Archimède H, Eugène M, Marie C, Boval M, Martin C, Morgavi DP, Lecomte M, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166–167:59–64

    Article  Google Scholar 

  • Arias L, Dossman M, Camargo JC, Villegas G, Rivera J, Lopera JJ, Murgueitio E, Chará J (2015) Estimación de carbono aéreo y subterráneo en sistemas silvopastoriles intensivos de Colombia. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales. Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, 678–682pp.

    Google Scholar 

  • Barahona R (1999) Condensed tannins in tropical forage legumes: their characterisation and study of their nutritional impact from the standpoint of structure-activity relationships. PhD Diss. University of Reading, U.K

    Google Scholar 

  • Barahona R, Sánchez MS (2005) Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Revista CORPOICA: Ciencia y Tecnología Agropecuaria 6(1):69–82

    Google Scholar 

  • Barahona R, Lascano CE, Narvaez N, Owen E, Morris P, Theodorou MK (2003) In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. J Sci Food Agric 83(12):1256–1266

    Article  CAS  Google Scholar 

  • Barahona R, Sanchez S, Lascano CE, Owen E, Morris P, Theodorou MK (2006) Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus Neocallimastyx hurleyensis. Enzym Microb Technol 39(2):281–288

    Article  CAS  Google Scholar 

  • Barahona R, Sánchez MS, Murgueitio E, Chará J (2014) Contribución de la Leucaena leucocephala Lam (de Wit) a la oferta y digestibilidad de nutrientes y las emisiones de metano entérico en bovinos pastoreando en sistemas silvopastoriles intensivos. En: Premio Nacional de Ganadería José Raimundo Sojo Zambrano, modalidad Investigación Científica. Bogotá, Colombia. Revista Carta Fedegán 140:66–69

    Google Scholar 

  • Barretto AGOP, Goran B, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Chang Biol 19:1804–1815

    Article  PubMed  Google Scholar 

  • Broom DM, Galindo FM, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc Roy Soc Biol Sci 280:2013–2025

    Google Scholar 

  • Calle Z, Murgueitio E (2008a) El roble morado o guayacán rosado Tabebuia rosea (Bertol.) D.C.: explosión de belleza en los paisajes ganaderos. Revista Carta FEDEGAN 109:76–82

    Google Scholar 

  • Calle Z, Murgueitio E (2008b) El aliso o cerezo: un gran aliado para la ganadería sostenible en las montañas colombianas. Revista Carta FEDEGAN 106:58–64

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 63:31–40

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive Silvopastoral systems in Colombia. J Sustain For 32(7):677–693

    Article  Google Scholar 

  • Calsavara L, Ribeiro RS, Rocha e Silveira S, Delarota GD, Freitas DS, Sacramento JP, Paciullo DS, Mauricio RM (2016) Potencial forrageiro da Tithonia diversifolia para alimentação de ruminantes. Livestock research for rural development, Volume 28, Article #17. www.lrrd.org/lrrd28/2/ferr28017.html. Accessed 16 Jan 2017

  • Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de Sistemas Silvopastoriles Intensivos: mejora en propiedades del suelo y restauración ecológica. En: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Fundación CIPAV. Cali, pp 331–347

    Google Scholar 

  • Cuartas CA, Naranjo JF, Tarazona A, Correa G, Barahona R (2015) Dry matter and nutrient intake and diet composition in Leucaena Leucocephala – based intensive silvopastoral systems. Trop Subtrop Agroecosystems 18:303–311

    Google Scholar 

  • Cubillos AM, Vallejo V, Arbeli Z, Teran W, Dick R, Molina CH, Molina E, Roldan F (2016) Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. Eur J Soil Biol 72:42–50

    Article  CAS  Google Scholar 

  • Dalzell SA, Shelton HM, Mullen BF, Larsen PH, McLaughlin KG (2006) Leucaena: a guide to establishment and management. Meat & Livestock Australia, Sydney. 70p

    Google Scholar 

  • Donney’s G, Molina IC, Rivera JE, Villegas G, Chará J, Barahona R (2015) Producción in vitro de metano de dietas ofrecidas en sistemas silvopastoriles intensivos con Tithonia diversifolia y sistemas tradicionales. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, pp 672–677

    Google Scholar 

  • Doré T, Makowsky D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210

    Article  Google Scholar 

  • Duarte MC, Bonissoni C (2012) Leaf and stem microscopic identification of Tithonia diversifolia (Hemsl.) Gray (Asteraceae). Braz J Pharm Sci 48:109–116

    Article  Google Scholar 

  • Fajardo D, Johnston R, Neira L, Chará J, Murgueitio E (2010) Influencia de los sistemas silvopastoriles en la diversidad de aves en la cuenca del río La Vieja, Colombia. Recursos Naturales y Ambiente 58:9–16

    Google Scholar 

  • Flores M, Solorio-Sánchez B (eds) (2012) Ganadería Sustentable. 2a Etapa del Proyecto Estratégico de Prioridad Nacional “Desarrollo y Fomento de los Sistemas Silvopastoriles Intensivos como alternativa alimenticia para la producción de carne y leche en regiones tropicales. Michoacán, México, Fundación Produce Michoacán, SAGARPA, COFUPRO, UADY, 215pp

    Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Hacer frente al cambio climático a través de la ganadería – Evaluación global de las emisiones y las oportunidades de mitigación. FAO, Roma

    Google Scholar 

  • Giraldo C, Escobar F, Chará J, Calle Z (2011) The adoption of silvopastoral systems promotes recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Divers 4:115–122

    Article  Google Scholar 

  • González R, Sánchez MS, Chirinda N, Arango J, Bolívar DM, Escobar D, Tapasco J, Barahona R (2015) Limitaciones para la implementación de acciones de mitigación de emisiones de gases de efecto de invernadero (GEI) en sistemas ganaderos en Latinoamérica. Livest Res Rural Dev 27, Article #249. http://www.lrrd.org/lrrd27/12/gonz27249.html. Accessed 21 Jan 2016

  • Guarda V, Guarda R (2014) Brazilian tropical grassland ecosystems: distribution and research advances. Am J Plant Sci 5:924–932

    Article  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to soil carbon sequestration in silvopastoral systems of Florida. Glob Chang Biol 16:427–438

    Article  Google Scholar 

  • Harrison M, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146

    Article  Google Scholar 

  • Harvey C, Chacón M, Donatti C, Garen E, Hannah L, Andrade LA, Bede L, Brown D, Calle A, Chará JD, Clement C, Gray E, Hoang M, Minang P, Rodríguez A, Seeberg-Elverfeldt C, Semroc B, Shames S, Smukler S, Somarriba E, Torquebiau E, van Etten J, Wollenberg E (2013) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv Lett 7:77–90

    Article  Google Scholar 

  • Herrero M, Havlík P, Valin H, Notenbaert A, Rufino M, Thornton PK, Blümmel M, Weiss F, Grace D, Obersteiner M (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XD, Liang JB, Tan HY, Yahya R, Ho W (2011) Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Anim Feed Sci Technol 166–167:373–376

    Article  Google Scholar 

  • Hui H, Tang G, Go VL (2009) Hypoglycemic herbs and their action mechanisms. Chin Med 4:11–21

    Article  PubMed  PubMed Central  Google Scholar 

  • IBGE (2006) Censo agropecuario 2016. http://biblioteca.ibge.gov.br/visualizacao/periodicos/51/agro_2006.pdf. Accessed 26 Jan 2017

  • Ibrahim M, Guerra L, Casasola F, Neely N (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated Crop Management, vol 11. FAO, Roma. http://www.fao.org/docrep/013/i1880e/i1880e09.pdf. Accessed 28 Jan

    Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81:3267–3273

    Article  Google Scholar 

  • Kennedy PM, Charmley E (2012) Methane yields from Brahman cattle fed tropical grasses and legumes. Anim Prod Sci 52:225–239

    Article  CAS  Google Scholar 

  • Kumar BM, George SJ, Jamaludheen V, Suresh TK (1998) Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. For Ecol Manag 112:145–163

    Article  Google Scholar 

  • Macedo MCM (2009) Integração lavoura e pecuária: o estado da arte e inovações tecnológicas. Rev Bras Zootec 38:133–146

    Article  Google Scholar 

  • Mahecha L, Escobar JP, Suárez JF, Restrepo LF (2007) Tithonia diversifolia (Helmsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livest Res Rural Dev 19 Article #16. Retrieved January 20, 2017, from http://www.lrrd.org/lrrd19/2/mahe19016.htm

  • Mahecha L, Murgueitio M, Angulo J, Olivera M, Zapata A, Cuartas CA, Naranjo JF, Murgueitio E (2011) Desempeño animal y características de la canal de dos grupos raciales de bovinos doble propósito pastoreando en sistemas silvopastoriles intensivos. Revista Colombiana de Ciencias Pecuarias 24:470

    Google Scholar 

  • Mauricio RM, Ribeiro RS, Silveira SR, Silva PL, Calsavara L, Pereira LG, Paciullo DS (2014) Tithonia diversifolia for ruminant nutrition. Trop Grasslands – Forrajes Tropicales 2:82–84

    Article  Google Scholar 

  • McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation – traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554

    Article  Google Scholar 

  • Mojardino M, Revell D, Pannell DJ (2010) The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems. Agric Syst 103:187–197

    Article  Google Scholar 

  • Molina I, Cantet JM, Montoya S, Correa G, Barahona R (2013) In vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. Revista CES Medicina Veterinaria y Zootecnia 8(2):15–31

    Google Scholar 

  • Molina IC, Donney’s G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R (2015a) La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livest Res Rural Dev 27:Article # 96. www.lrrd.org/lrrd27/5/moli27096.html. Accessed 21 Jan 2017

  • Molina IC, Donney’s G, Montoya S, Villegas G, Rivera JE, Lopera J J, Chará J, Barahona R (2015b) Emisiones in vivo de metano en sistemas de producción con y sin inclusión de Tithonia diversifolia. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales. Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, 678–682pp

    Google Scholar 

  • Molina IC, Angarita E, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucoceophala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an under-exploited environmental benefit of agroforestry systems. Agrofor Syst 61 & 62:281–298

    Google Scholar 

  • Montagnini F et al (1992) Sistemas Agroforestales. Principios y Aplicaciones en los Trópicos. 2da. ed. Organización para Estudios Tropicales (OTS), San José, Costa Rica, 622pp. Available In: http://www.ots.ac.cr/images/downloads/information-resources/library/sistemasagroforestales.pdf

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques 316(2):3–16

    Google Scholar 

  • Montes-Londoño I (2017) Tropical dry forests in multi-functional landscapes: agroforestry systems for conservation and livelihoods. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in Agroforestry, vol 12. Springer, Cham, pp 47–78

    Google Scholar 

  • Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Chará J, Escobar F, Calle Z (2016) Land sharing vs. land sparing in the dry Caribbean lowlands: a dung beetles’ perspective. Appl Soil Ecol 98:204–212

    Article  Google Scholar 

  • Mottet A, De Haan C, Falcucci A, Tempio G, Opio C, Gerber P (2017) Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Sec 14:1 https://doi.org/10.1016/j.gfs.2017.01.001

  • Murgueitio E, Ibrahim M (2008) Ganadería y medio ambiente en América Latina. En: Murgueitio E, Cuartas CA, Naranjo JF (eds). Ganadería del Futuro, Fundación CIPAV, Cali, pp 19–39

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Article  Google Scholar 

  • Murgueitio E, Chará J, Solarte A, Uribe F, Zapata C, Rivera JE (2013) Agroforestería Pecuaria y Sistemas Silvopastoriles Intensivos (SSPi) para la adaptación ganadera al cambio climático con sostenibilidad. Revista Colombiana de Ciencias Pecuarias 26:313–316

    Google Scholar 

  • Murgueitio E, Chará J, Barahona R, Cuartas C, Naranjo J (2014) Intensive Silvopastoral systems (ISPS), mitigation and adaptation tool to climate change. Trop Subtrop Agroecosystems 17:501–507

    Google Scholar 

  • Murgueitio E, Flores M, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015a) Productividad en sistemas silvopastoriles intensivos en América Latina. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales, Serie Técnica Informe Técnico 402, CATIE, Turrialba. Fundación CIPAV, Cali, pp 59–101

    Google Scholar 

  • Murgueitio E, Barahona R, Chará J, Flores M, Mauricio RM, Molina JJ (2015b) The intensive silvopastoral systems in Latin America: sustainable alternative to face climatic change in animal husbandry. Cuba J Agric Sci 49(4):541–554

    Google Scholar 

  • Murgueitio E, Uribe F, Molina C, Molina E, Galindo W, Chará J, Flores M, Giraldo C, Cuartas C, Naranjo J, Solarte L, González J (2016) Establecimiento y manejo de sistemas silvopastoriles intensivos con leucaena. In: Murgueitio E, Galindo W, Chará J, Uribe F (eds). Editorial CIPAV. Cali, Colombia, 220p

    Google Scholar 

  • Nair VD, Haile SG, Michel GA, Nair R (2007) Environmental quality improvement of agricultural lands through silvopasture in southeastern United States. Sci Agric 64(5):513–519

    Article  CAS  Google Scholar 

  • Nair PKR (2011) Agroforestry systems and environmental quality: introduction. J Environ Qual 40:784–790

    Article  CAS  PubMed  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter J (2010) Carbon sequestration in agroforestry systems. Adv. Agron. 108:237–307

    Google Scholar 

  • Naranjo J (2014) Evaluación de la fermentación ruminal in vitro en dietas simuladas de Sistemas Silvopastoriles intensivos con Leucaena leucocephala. PhD Diss, Universidad de Antioquia, Medellín Colombia

    Google Scholar 

  • Naranjo JF, Cuartas CA, Murgueitio E, Chará JD, Barahona R (2012) Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livest Res Rural Dev 24, Article #149. 1 August. http://www.lrrd.org/lrrd24/8/nara24150.htm. Accessed 21 Jan 2017

  • Neely C, Bunning S, Wilkes A (2009) Review of evidence on drylands pastoral systems and climate change. Implications and opportunities for mitigation and adaptation. FAO, Rome. 49p

    Google Scholar 

  • Pingali P, McCullough E (2010) Drivers of change in global agricultural livestock systems. In: Steinfeld H, Mooney HA, Schneider F, Neville LE (eds) Livestock in a changing landscape, volume 1: drivers, consequences and responses. Island Press, Washington, DC, pp 5–10

    Google Scholar 

  • Radrizzani A, Dalzell SA, Kravchuk O (2010) A grazier survey of the long-term productivity of leucaena (leucaena leucocephala)-grass pastures in Queensland. Anim Prod Sci 50:105–113

    Article  Google Scholar 

  • Radrizzani A, Shelton HM, Dalzell SA, Kirchhof G (2011) Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland. Crop Pasture Sci 62:337–345

    Article  CAS  Google Scholar 

  • Rae A, Nayga R (2010) Trends in consumption, production and trade in livestock and livestock products. In: Steinfeld H, Mooney HA, Schneider F, Neville LE (eds) Livestock in a changing landscape, volume 1: drivers, consequences and responses. Island Press, Washington, DC, pp 10–33

    Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    Article  CAS  Google Scholar 

  • Reyes E (2015) Análisis de los beneficios de la adopción de sistemas silvopastoriles en la Producción de carne y leche en Colombia (Estudios de caso). En: 3er Congreso Nacional de Sistemas Silvopastoriles: VII Congreso Internacional Sistemas Agroforestales INTA, Puerto Iguazú, Argentina, 7–9 may, pp 459–462

    Google Scholar 

  • Reyes E, Chará J, Deblitz C, Molina J, Gómez M, Mitchell L, Romanowicz B (2016) Impact of intensive silvopastoral systems on economics, diversity and animal welfare in Colombia. In: Proceedings world congress on silvopastoral systems, Evora, Portugal, 27–30 September, pp 65

    Google Scholar 

  • Rhoades CC, Eckert GE, Coleman DC (1998) Effect of pasture trees on soil nitrogen and organic matter: implications for tropical Montane forest restoration. Restor Ecol 6:262–270

    Article  Google Scholar 

  • Ribeiro RS, Terry SA, Sacramento JP, Rocha e Silveira S, Bento CB, Silva EF, Montovani HC, Gama MAS, Pereira LG, Tomich TR, Mauricio RM, Chaves A (2016) Tithonia diversifolia as a supplementary feed for dairy cows. PLoS One 11:e0165751

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera L, Armbrecht I, Calle Z (2013) Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agric Ecosyst Environ 181:188–194

    Article  Google Scholar 

  • Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015a) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest Res Rural Dev 27, Article #189. http://www.lrrd.org/lrrd27/10/rive27189.html. Accessed 21 Jan 2017

  • Rivera JE, Molina IC, Donney’s G, Villegas G, Chará J, Barahona R (2015b) Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con Leucaena leucocephala y sistemas convencionales orientados a la producción de leche. Livest Res Rural Dev 27, Article #76. http://www.lrrd.org/lrrd27/4/rive27076.html. Accessed 21 Jan 2017

  • Rivera J, Chará J, Barahona R (2016) Análisis de ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosystems 19:237–251

    Google Scholar 

  • Roberts E (2017) Agroforestry for the Northeastern United States: research, practice, and possibilities. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in Agroforestry 12. Springer, Cham, pp 79–126

    Google Scholar 

  • Robinson TP, Thornton PK, Franceschini G, Kruska RL, Chiozza F, Notenbaert A, Cecchi G, Herrero M, Epprecht M, Fritz S, You L, Conchedda G, See L (2011) Global livestock production systems. Rome, Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152pp

    Google Scholar 

  • Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2007) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48

    Google Scholar 

  • Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelton HM (2005) Forage tree legume perspectives. In: Reynolds SG, Frame J (eds) Grasslands: developments, opportunities, perspectives. FAO Rome, Science Publishers, Inc, Plymouth, pp 81–108

    Google Scholar 

  • Shelton M, Dalzell S (2007) Production, economic and environmental benefits of leucaena pasture. Trop Grasslands 41:174–190

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    Article  CAS  Google Scholar 

  • SOCLA 2014 Agroecology: concepts, principles and applications. Contributions by the Sociedad Científica Latinoamericana de Agroecología (SOCLA) to FAO’s International Symposium on Agroecology for Food Security and Nutrition. SOCLA. www.socla.co/wp-content/uploads/2014/socla-contribution-to-FAO.pdf. Accessed 27 Jan 2017

  • Solorio-Sánchez FJ, Bacab-Pérez HM, Ramírez-Avilés L (2011) Sistemas Silvopastoriles Intensivos: Investigación en el Valle de Tepalcatepec, Michoacán. En: Xóchitl-Flores M, Solorio-Sánchez B (eds) Establecimiento de Sistemas Silvopastoriles Intensivos para la producción de leche y carne en el trópico de México. Primera etapa del proyecto estratégico de prioridad nacional. SAGARPA, Fundación Produce Michoacán, COFUPRO, UADY, Morelia, México, 15pp

    Google Scholar 

  • Solorio-Sánchez FJ, Solorio-Sánchez B, Casanova-Lugo F, Ramírez-Avilés L, Ayala-Burgos A, Ku-Vera J, Aguilar-Pérez C (2012) Situación actual global de la investigación y desarrollo tecnológico en el establecimiento, manejo y aprovechamiento de los sistemas silvopastoriles intensivos. En: IV Congreso Internacional sobre Sistemas Silvopastoriles Intensivos. Fundación Produce Michoacán, Universidad Autónoma de Yucatán, Morelia, México, 21–23 mar, pp 35–43

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow, Environmental issues and options. LEAD-FAO, Rome

    Google Scholar 

  • Terry SA, Ribeiro RS, Freitas DS, Pereira LG, Tomich TR, Maurício RM, Chaves A (2016) Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Anim Prod Sci 56(3):437–441

    Article  CAS  Google Scholar 

  • Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci 107(47):19667–19672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiebre MS, Kassi NJ, Kouadio YJ, N’Guessan EK (2012) Etude de la biologie reproductive de Tithonia diversifolia (Hemsl.) Gray (Asteraceae): Espèce non indigène invasive en Côte d’Ivoire. J Asian Sci Res 2:200–211

    Google Scholar 

  • TWN, SOCLA (2015) Agroecology: key concepts, principles and practices. Third world network and SOCLA. https://agroeco.org/wp-content/uploads/2015/11/Agroecology-training-manual-TWN-SOCLA.pdf. Accessed 21 Jan 2017

  • Vallejo VE, Roldán F, Dick RP (2010) Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol Fertil Soils 46(6):577–587

    Article  CAS  Google Scholar 

  • Verdecia D, Ramirez J, Leonard I, Alvarez Y, Bazan Y, Bodas R, Andrés S, Alvarez J, Giraldez F, Lopez S (2011) Calidad de Tithonia diversifolia en una zona del Valle del Cauto. Revista Electrónica de Veterinaria 12:1–13

    Google Scholar 

  • Wilkins RJ (2000) Forages and their role in animal systems. In: Givens DI, Owen E, RFE A, Omed HD (eds) Forage evaluation in ruminant nutrition. CAB, Wallingford, pp 1–14

    Google Scholar 

  • World Animal Protection, FEDEGAN, CIPAV, agri benchmark (2014) A case study of triple wins in beef and milk production in Colombia. https://unfccc.int/files/documentation/submissions_from_non-party_stakeholders/application/pdf/521.pdf. Accessed 21 Jan 2017

  • Zapata C, Robalino J, Solarte A (2015) Influencia del Pago por Servicios Ambientales y otras variables biofísicas y socioeconómicas en la adopción de sistemas silvopastoriles a nivel de finca. Livest Res Rural Dev 27, Article #63. http://www.lrrd.org/lrrd27/4/zapa27063.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Chará .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chará, J. et al. (2017). Intensive Silvopastoral Systems: Economics and Contribution to Climate Change Mitigation and Public Policies. In: Montagnini, F. (eds) Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty. Advances in Agroforestry, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69371-2_16

Download citation

Publish with us

Policies and ethics