Intensive Silvopastoral Systems: Economics and Contribution to Climate Change Mitigation and Public Policies

  • Julián Chará
  • Julián Rivera
  • Rolando Barahona
  • Enrique Murgueitio R.
  • Claus Deblitz
  • Ernesto Reyes
  • Rogerio Martins Mauricio
  • Juan José Molina
  • Martha Flores
  • Andrés Zuluaga
Chapter
Part of the Advances in Agroforestry book series (ADAG, volume 12)

Abstract

Intensive Silvopastoral Systems (ISPS) are agroforestry arrangements that combine high-density cultivation of fodder shrubs (4000–40,000 plants ha−1) with improved tropical grasses, and trees or palms at densities of 100–600 individuals ha−1. The ISPS were initially developed in Colombia and have expanded to Mexico and Brazil, among other countries. The main fodder shrubs currently used are Leucaena leucocephala and Tithonia diversifolia due to their fast growth, tolerance to heavy grazing by cattle, and reduction in the emissions of greenhouse gases. Among their advantages, ISPS produce more edible dry matter and nutrients per hectare; increase milk or meat production while reducing the need of chemical fertilizers and concentrate feeds, thus improving farm profitability; increase carbon sequestration and reduce methane emissions from enteric fermentation; and improve animal welfare and biodiversity. The present chapter is a review of recent experiences and research findings in ISPS in Latin America and their effect on production efficiency, greenhouse gas emissions, and economic performance. It also reviews the need of public policy and research to improve access to capital, incentives, and extension services in cattle ranching areas to promote ISPS. ISPS are an important tool in supplying beef and dairy products for local and global markets, while also providing environmental services and increasing resilience to climate change.

Keywords

Cattle ranching Greenhouse gases Leucaena Methane Tithonia 

References

  1. Acosta A, Murgueitio E, Solarte A, Zapata Y (2014) Fomento de sistemas agrosilvopastoriles institucionalmente sostenibles. En: Acosta A, Díaz T (eds) Lineamientos de política para el desarrollo sostenible del sector ganadero. FAO, Roma, pp 88–103Google Scholar
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper No. 12-03. Rome, FAO, http://www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed 03 Feb 2017
  3. Archimède H, Eugène M, Marie C, Boval M, Martin C, Morgavi DP, Lecomte M, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166–167:59–64CrossRefGoogle Scholar
  4. Arias L, Dossman M, Camargo JC, Villegas G, Rivera J, Lopera JJ, Murgueitio E, Chará J (2015) Estimación de carbono aéreo y subterráneo en sistemas silvopastoriles intensivos de Colombia. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales. Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, 678–682pp.Google Scholar
  5. Barahona R (1999) Condensed tannins in tropical forage legumes: their characterisation and study of their nutritional impact from the standpoint of structure-activity relationships. PhD Diss. University of Reading, U.KGoogle Scholar
  6. Barahona R, Sánchez MS (2005) Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Revista CORPOICA: Ciencia y Tecnología Agropecuaria 6(1):69–82Google Scholar
  7. Barahona R, Lascano CE, Narvaez N, Owen E, Morris P, Theodorou MK (2003) In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. J Sci Food Agric 83(12):1256–1266CrossRefGoogle Scholar
  8. Barahona R, Sanchez S, Lascano CE, Owen E, Morris P, Theodorou MK (2006) Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus Neocallimastyx hurleyensis. Enzym Microb Technol 39(2):281–288CrossRefGoogle Scholar
  9. Barahona R, Sánchez MS, Murgueitio E, Chará J (2014) Contribución de la Leucaena leucocephala Lam (de Wit) a la oferta y digestibilidad de nutrientes y las emisiones de metano entérico en bovinos pastoreando en sistemas silvopastoriles intensivos. En: Premio Nacional de Ganadería José Raimundo Sojo Zambrano, modalidad Investigación Científica. Bogotá, Colombia. Revista Carta Fedegán 140:66–69Google Scholar
  10. Barretto AGOP, Goran B, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Chang Biol 19:1804–1815CrossRefPubMedGoogle Scholar
  11. Broom DM, Galindo FM, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc Roy Soc Biol Sci 280:2013–2025Google Scholar
  12. Calle Z, Murgueitio E (2008a) El roble morado o guayacán rosado Tabebuia rosea (Bertol.) D.C.: explosión de belleza en los paisajes ganaderos. Revista Carta FEDEGAN 109:76–82Google Scholar
  13. Calle Z, Murgueitio E (2008b) El aliso o cerezo: un gran aliado para la ganadería sostenible en las montañas colombianas. Revista Carta FEDEGAN 106:58–64Google Scholar
  14. Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 63:31–40Google Scholar
  15. Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive Silvopastoral systems in Colombia. J Sustain For 32(7):677–693CrossRefGoogle Scholar
  16. Calsavara L, Ribeiro RS, Rocha e Silveira S, Delarota GD, Freitas DS, Sacramento JP, Paciullo DS, Mauricio RM (2016) Potencial forrageiro da Tithonia diversifolia para alimentação de ruminantes. Livestock research for rural development, Volume 28, Article #17. www.lrrd.org/lrrd28/2/ferr28017.html. Accessed 16 Jan 2017
  17. Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de Sistemas Silvopastoriles Intensivos: mejora en propiedades del suelo y restauración ecológica. En: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Fundación CIPAV. Cali, pp 331–347Google Scholar
  18. Cuartas CA, Naranjo JF, Tarazona A, Correa G, Barahona R (2015) Dry matter and nutrient intake and diet composition in Leucaena Leucocephala – based intensive silvopastoral systems. Trop Subtrop Agroecosystems 18:303–311Google Scholar
  19. Cubillos AM, Vallejo V, Arbeli Z, Teran W, Dick R, Molina CH, Molina E, Roldan F (2016) Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. Eur J Soil Biol 72:42–50CrossRefGoogle Scholar
  20. Dalzell SA, Shelton HM, Mullen BF, Larsen PH, McLaughlin KG (2006) Leucaena: a guide to establishment and management. Meat & Livestock Australia, Sydney. 70pGoogle Scholar
  21. Donney’s G, Molina IC, Rivera JE, Villegas G, Chará J, Barahona R (2015) Producción in vitro de metano de dietas ofrecidas en sistemas silvopastoriles intensivos con Tithonia diversifolia y sistemas tradicionales. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, pp 672–677Google Scholar
  22. Doré T, Makowsky D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210CrossRefGoogle Scholar
  23. Duarte MC, Bonissoni C (2012) Leaf and stem microscopic identification of Tithonia diversifolia (Hemsl.) Gray (Asteraceae). Braz J Pharm Sci 48:109–116CrossRefGoogle Scholar
  24. Fajardo D, Johnston R, Neira L, Chará J, Murgueitio E (2010) Influencia de los sistemas silvopastoriles en la diversidad de aves en la cuenca del río La Vieja, Colombia. Recursos Naturales y Ambiente 58:9–16Google Scholar
  25. Flores M, Solorio-Sánchez B (eds) (2012) Ganadería Sustentable. 2a Etapa del Proyecto Estratégico de Prioridad Nacional “Desarrollo y Fomento de los Sistemas Silvopastoriles Intensivos como alternativa alimenticia para la producción de carne y leche en regiones tropicales. Michoacán, México, Fundación Produce Michoacán, SAGARPA, COFUPRO, UADY, 215ppGoogle Scholar
  26. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Hacer frente al cambio climático a través de la ganadería – Evaluación global de las emisiones y las oportunidades de mitigación. FAO, RomaGoogle Scholar
  27. Giraldo C, Escobar F, Chará J, Calle Z (2011) The adoption of silvopastoral systems promotes recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Divers 4:115–122CrossRefGoogle Scholar
  28. González R, Sánchez MS, Chirinda N, Arango J, Bolívar DM, Escobar D, Tapasco J, Barahona R (2015) Limitaciones para la implementación de acciones de mitigación de emisiones de gases de efecto de invernadero (GEI) en sistemas ganaderos en Latinoamérica. Livest Res Rural Dev 27, Article #249. http://www.lrrd.org/lrrd27/12/gonz27249.html. Accessed 21 Jan 2016
  29. Guarda V, Guarda R (2014) Brazilian tropical grassland ecosystems: distribution and research advances. Am J Plant Sci 5:924–932CrossRefGoogle Scholar
  30. Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to soil carbon sequestration in silvopastoral systems of Florida. Glob Chang Biol 16:427–438CrossRefGoogle Scholar
  31. Harrison M, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146CrossRefGoogle Scholar
  32. Harvey C, Chacón M, Donatti C, Garen E, Hannah L, Andrade LA, Bede L, Brown D, Calle A, Chará JD, Clement C, Gray E, Hoang M, Minang P, Rodríguez A, Seeberg-Elverfeldt C, Semroc B, Shames S, Smukler S, Somarriba E, Torquebiau E, van Etten J, Wollenberg E (2013) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv Lett 7:77–90CrossRefGoogle Scholar
  33. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino M, Thornton PK, Blümmel M, Weiss F, Grace D, Obersteiner M (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang XD, Liang JB, Tan HY, Yahya R, Ho W (2011) Effects of Leucaena condensed tannins of differing molecular weights on in vitro CH4 production. Anim Feed Sci Technol 166–167:373–376CrossRefGoogle Scholar
  35. Hui H, Tang G, Go VL (2009) Hypoglycemic herbs and their action mechanisms. Chin Med 4:11–21CrossRefPubMedPubMedCentralGoogle Scholar
  36. IBGE (2006) Censo agropecuario 2016. http://biblioteca.ibge.gov.br/visualizacao/periodicos/51/agro_2006.pdf. Accessed 26 Jan 2017
  37. Ibrahim M, Guerra L, Casasola F, Neely N (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated Crop Management, vol 11. FAO, Roma. http://www.fao.org/docrep/013/i1880e/i1880e09.pdf. Accessed 28 JanGoogle Scholar
  38. Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81:3267–3273CrossRefGoogle Scholar
  39. Kennedy PM, Charmley E (2012) Methane yields from Brahman cattle fed tropical grasses and legumes. Anim Prod Sci 52:225–239CrossRefGoogle Scholar
  40. Kumar BM, George SJ, Jamaludheen V, Suresh TK (1998) Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. For Ecol Manag 112:145–163CrossRefGoogle Scholar
  41. Macedo MCM (2009) Integração lavoura e pecuária: o estado da arte e inovações tecnológicas. Rev Bras Zootec 38:133–146CrossRefGoogle Scholar
  42. Mahecha L, Escobar JP, Suárez JF, Restrepo LF (2007) Tithonia diversifolia (Helmsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livest Res Rural Dev 19 Article #16. Retrieved January 20, 2017, from http://www.lrrd.org/lrrd19/2/mahe19016.htm
  43. Mahecha L, Murgueitio M, Angulo J, Olivera M, Zapata A, Cuartas CA, Naranjo JF, Murgueitio E (2011) Desempeño animal y características de la canal de dos grupos raciales de bovinos doble propósito pastoreando en sistemas silvopastoriles intensivos. Revista Colombiana de Ciencias Pecuarias 24:470Google Scholar
  44. Mauricio RM, Ribeiro RS, Silveira SR, Silva PL, Calsavara L, Pereira LG, Paciullo DS (2014) Tithonia diversifolia for ruminant nutrition. Trop Grasslands – Forrajes Tropicales 2:82–84CrossRefGoogle Scholar
  45. McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation – traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554CrossRefGoogle Scholar
  46. Mojardino M, Revell D, Pannell DJ (2010) The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems. Agric Syst 103:187–197CrossRefGoogle Scholar
  47. Molina I, Cantet JM, Montoya S, Correa G, Barahona R (2013) In vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. Revista CES Medicina Veterinaria y Zootecnia 8(2):15–31Google Scholar
  48. Molina IC, Donney’s G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R (2015a) La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livest Res Rural Dev 27:Article # 96. www.lrrd.org/lrrd27/5/moli27096.html. Accessed 21 Jan 2017
  49. Molina IC, Donney’s G, Montoya S, Villegas G, Rivera JE, Lopera J J, Chará J, Barahona R (2015b) Emisiones in vivo de metano en sistemas de producción con y sin inclusión de Tithonia diversifolia. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales. Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 may, 678–682ppGoogle Scholar
  50. Molina IC, Angarita E, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucoceophala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29CrossRefGoogle Scholar
  51. Montagnini F, Nair PKR (2004) Carbon sequestration: an under-exploited environmental benefit of agroforestry systems. Agrofor Syst 61 & 62:281–298Google Scholar
  52. Montagnini F et al (1992) Sistemas Agroforestales. Principios y Aplicaciones en los Trópicos. 2da. ed. Organización para Estudios Tropicales (OTS), San José, Costa Rica, 622pp. Available In: http://www.ots.ac.cr/images/downloads/information-resources/library/sistemasagroforestales.pdf
  53. Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et Forêts des Tropiques 316(2):3–16Google Scholar
  54. Montes-Londoño I (2017) Tropical dry forests in multi-functional landscapes: agroforestry systems for conservation and livelihoods. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in Agroforestry, vol 12. Springer, Cham, pp 47–78Google Scholar
  55. Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Chará J, Escobar F, Calle Z (2016) Land sharing vs. land sparing in the dry Caribbean lowlands: a dung beetles’ perspective. Appl Soil Ecol 98:204–212CrossRefGoogle Scholar
  56. Mottet A, De Haan C, Falcucci A, Tempio G, Opio C, Gerber P (2017) Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Sec 14:1 https://doi.org/10.1016/j.gfs.2017.01.001
  57. Murgueitio E, Ibrahim M (2008) Ganadería y medio ambiente en América Latina. En: Murgueitio E, Cuartas CA, Naranjo JF (eds). Ganadería del Futuro, Fundación CIPAV, Cali, pp 19–39Google Scholar
  58. Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663CrossRefGoogle Scholar
  59. Murgueitio E, Chará J, Solarte A, Uribe F, Zapata C, Rivera JE (2013) Agroforestería Pecuaria y Sistemas Silvopastoriles Intensivos (SSPi) para la adaptación ganadera al cambio climático con sostenibilidad. Revista Colombiana de Ciencias Pecuarias 26:313–316Google Scholar
  60. Murgueitio E, Chará J, Barahona R, Cuartas C, Naranjo J (2014) Intensive Silvopastoral systems (ISPS), mitigation and adaptation tool to climate change. Trop Subtrop Agroecosystems 17:501–507Google Scholar
  61. Murgueitio E, Flores M, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015a) Productividad en sistemas silvopastoriles intensivos en América Latina. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales, Serie Técnica Informe Técnico 402, CATIE, Turrialba. Fundación CIPAV, Cali, pp 59–101Google Scholar
  62. Murgueitio E, Barahona R, Chará J, Flores M, Mauricio RM, Molina JJ (2015b) The intensive silvopastoral systems in Latin America: sustainable alternative to face climatic change in animal husbandry. Cuba J Agric Sci 49(4):541–554Google Scholar
  63. Murgueitio E, Uribe F, Molina C, Molina E, Galindo W, Chará J, Flores M, Giraldo C, Cuartas C, Naranjo J, Solarte L, González J (2016) Establecimiento y manejo de sistemas silvopastoriles intensivos con leucaena. In: Murgueitio E, Galindo W, Chará J, Uribe F (eds). Editorial CIPAV. Cali, Colombia, 220pGoogle Scholar
  64. Nair VD, Haile SG, Michel GA, Nair R (2007) Environmental quality improvement of agricultural lands through silvopasture in southeastern United States. Sci Agric 64(5):513–519CrossRefGoogle Scholar
  65. Nair PKR (2011) Agroforestry systems and environmental quality: introduction. J Environ Qual 40:784–790CrossRefPubMedGoogle Scholar
  66. Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23CrossRefGoogle Scholar
  67. Nair PKR, Nair VD, Kumar BM, Showalter J (2010) Carbon sequestration in agroforestry systems. Adv. Agron. 108:237–307Google Scholar
  68. Naranjo J (2014) Evaluación de la fermentación ruminal in vitro en dietas simuladas de Sistemas Silvopastoriles intensivos con Leucaena leucocephala. PhD Diss, Universidad de Antioquia, Medellín ColombiaGoogle Scholar
  69. Naranjo JF, Cuartas CA, Murgueitio E, Chará JD, Barahona R (2012) Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livest Res Rural Dev 24, Article #149. 1 August. http://www.lrrd.org/lrrd24/8/nara24150.htm. Accessed 21 Jan 2017
  70. Neely C, Bunning S, Wilkes A (2009) Review of evidence on drylands pastoral systems and climate change. Implications and opportunities for mitigation and adaptation. FAO, Rome. 49pGoogle Scholar
  71. Pingali P, McCullough E (2010) Drivers of change in global agricultural livestock systems. In: Steinfeld H, Mooney HA, Schneider F, Neville LE (eds) Livestock in a changing landscape, volume 1: drivers, consequences and responses. Island Press, Washington, DC, pp 5–10Google Scholar
  72. Radrizzani A, Dalzell SA, Kravchuk O (2010) A grazier survey of the long-term productivity of leucaena (leucaena leucocephala)-grass pastures in Queensland. Anim Prod Sci 50:105–113CrossRefGoogle Scholar
  73. Radrizzani A, Shelton HM, Dalzell SA, Kirchhof G (2011) Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland. Crop Pasture Sci 62:337–345CrossRefGoogle Scholar
  74. Rae A, Nayga R (2010) Trends in consumption, production and trade in livestock and livestock products. In: Steinfeld H, Mooney HA, Schneider F, Neville LE (eds) Livestock in a changing landscape, volume 1: drivers, consequences and responses. Island Press, Washington, DC, pp 10–33Google Scholar
  75. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231CrossRefGoogle Scholar
  76. Reyes E (2015) Análisis de los beneficios de la adopción de sistemas silvopastoriles en la Producción de carne y leche en Colombia (Estudios de caso). En: 3er Congreso Nacional de Sistemas Silvopastoriles: VII Congreso Internacional Sistemas Agroforestales INTA, Puerto Iguazú, Argentina, 7–9 may, pp 459–462Google Scholar
  77. Reyes E, Chará J, Deblitz C, Molina J, Gómez M, Mitchell L, Romanowicz B (2016) Impact of intensive silvopastoral systems on economics, diversity and animal welfare in Colombia. In: Proceedings world congress on silvopastoral systems, Evora, Portugal, 27–30 September, pp 65Google Scholar
  78. Rhoades CC, Eckert GE, Coleman DC (1998) Effect of pasture trees on soil nitrogen and organic matter: implications for tropical Montane forest restoration. Restor Ecol 6:262–270CrossRefGoogle Scholar
  79. Ribeiro RS, Terry SA, Sacramento JP, Rocha e Silveira S, Bento CB, Silva EF, Montovani HC, Gama MAS, Pereira LG, Tomich TR, Mauricio RM, Chaves A (2016) Tithonia diversifolia as a supplementary feed for dairy cows. PLoS One 11:e0165751CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rivera L, Armbrecht I, Calle Z (2013) Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agric Ecosyst Environ 181:188–194CrossRefGoogle Scholar
  81. Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015a) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest Res Rural Dev 27, Article #189. http://www.lrrd.org/lrrd27/10/rive27189.html. Accessed 21 Jan 2017
  82. Rivera JE, Molina IC, Donney’s G, Villegas G, Chará J, Barahona R (2015b) Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con Leucaena leucocephala y sistemas convencionales orientados a la producción de leche. Livest Res Rural Dev 27, Article #76. http://www.lrrd.org/lrrd27/4/rive27076.html. Accessed 21 Jan 2017
  83. Rivera J, Chará J, Barahona R (2016) Análisis de ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosystems 19:237–251Google Scholar
  84. Roberts E (2017) Agroforestry for the Northeastern United States: research, practice, and possibilities. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in Agroforestry 12. Springer, Cham, pp 79–126Google Scholar
  85. Robinson TP, Thornton PK, Franceschini G, Kruska RL, Chiozza F, Notenbaert A, Cecchi G, Herrero M, Epprecht M, Fritz S, You L, Conchedda G, See L (2011) Global livestock production systems. Rome, Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152ppGoogle Scholar
  86. Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2007) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48Google Scholar
  87. Sampaio BL, Edrada-Ebel R, Da Costa FB (2016) Effect of environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep 6:29265CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shelton HM (2005) Forage tree legume perspectives. In: Reynolds SG, Frame J (eds) Grasslands: developments, opportunities, perspectives. FAO Rome, Science Publishers, Inc, Plymouth, pp 81–108Google Scholar
  89. Shelton M, Dalzell S (2007) Production, economic and environmental benefits of leucaena pasture. Trop Grasslands 41:174–190Google Scholar
  90. Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813CrossRefGoogle Scholar
  91. SOCLA 2014 Agroecology: concepts, principles and applications. Contributions by the Sociedad Científica Latinoamericana de Agroecología (SOCLA) to FAO’s International Symposium on Agroecology for Food Security and Nutrition. SOCLA. www.socla.co/wp-content/uploads/2014/socla-contribution-to-FAO.pdf. Accessed 27 Jan 2017
  92. Solorio-Sánchez FJ, Bacab-Pérez HM, Ramírez-Avilés L (2011) Sistemas Silvopastoriles Intensivos: Investigación en el Valle de Tepalcatepec, Michoacán. En: Xóchitl-Flores M, Solorio-Sánchez B (eds) Establecimiento de Sistemas Silvopastoriles Intensivos para la producción de leche y carne en el trópico de México. Primera etapa del proyecto estratégico de prioridad nacional. SAGARPA, Fundación Produce Michoacán, COFUPRO, UADY, Morelia, México, 15ppGoogle Scholar
  93. Solorio-Sánchez FJ, Solorio-Sánchez B, Casanova-Lugo F, Ramírez-Avilés L, Ayala-Burgos A, Ku-Vera J, Aguilar-Pérez C (2012) Situación actual global de la investigación y desarrollo tecnológico en el establecimiento, manejo y aprovechamiento de los sistemas silvopastoriles intensivos. En: IV Congreso Internacional sobre Sistemas Silvopastoriles Intensivos. Fundación Produce Michoacán, Universidad Autónoma de Yucatán, Morelia, México, 21–23 mar, pp 35–43Google Scholar
  94. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow, Environmental issues and options. LEAD-FAO, RomeGoogle Scholar
  95. Terry SA, Ribeiro RS, Freitas DS, Pereira LG, Tomich TR, Maurício RM, Chaves A (2016) Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Anim Prod Sci 56(3):437–441CrossRefGoogle Scholar
  96. Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci 107(47):19667–19672CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tiebre MS, Kassi NJ, Kouadio YJ, N’Guessan EK (2012) Etude de la biologie reproductive de Tithonia diversifolia (Hemsl.) Gray (Asteraceae): Espèce non indigène invasive en Côte d’Ivoire. J Asian Sci Res 2:200–211Google Scholar
  98. TWN, SOCLA (2015) Agroecology: key concepts, principles and practices. Third world network and SOCLA. https://agroeco.org/wp-content/uploads/2015/11/Agroecology-training-manual-TWN-SOCLA.pdf. Accessed 21 Jan 2017
  99. Vallejo VE, Roldán F, Dick RP (2010) Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol Fertil Soils 46(6):577–587CrossRefGoogle Scholar
  100. Verdecia D, Ramirez J, Leonard I, Alvarez Y, Bazan Y, Bodas R, Andrés S, Alvarez J, Giraldez F, Lopez S (2011) Calidad de Tithonia diversifolia en una zona del Valle del Cauto. Revista Electrónica de Veterinaria 12:1–13Google Scholar
  101. Wilkins RJ (2000) Forages and their role in animal systems. In: Givens DI, Owen E, RFE A, Omed HD (eds) Forage evaluation in ruminant nutrition. CAB, Wallingford, pp 1–14Google Scholar
  102. World Animal Protection, FEDEGAN, CIPAV, agri benchmark (2014) A case study of triple wins in beef and milk production in Colombia. https://unfccc.int/files/documentation/submissions_from_non-party_stakeholders/application/pdf/521.pdf. Accessed 21 Jan 2017
  103. Zapata C, Robalino J, Solarte A (2015) Influencia del Pago por Servicios Ambientales y otras variables biofísicas y socioeconómicas en la adopción de sistemas silvopastoriles a nivel de finca. Livest Res Rural Dev 27, Article #63. http://www.lrrd.org/lrrd27/4/zapa27063.htm

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julián Chará
    • 1
    • 2
  • Julián Rivera
    • 1
    • 2
  • Rolando Barahona
    • 3
  • Enrique Murgueitio R.
    • 1
    • 2
  • Claus Deblitz
    • 4
  • Ernesto Reyes
    • 4
  • Rogerio Martins Mauricio
    • 5
  • Juan José Molina
    • 1
    • 6
  • Martha Flores
    • 7
  • Andrés Zuluaga
    • 2
    • 8
  1. 1.Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, CIPAVCaliColombia
  2. 2.Mainstreaming Sustainable Cattle Ranching ProjectBogotáColombia
  3. 3.Universidad Nacional de ColombiaMedellínColombia
  4. 4.Agri benchmark Network-Thünen Institute of Farm EconomicsBraunschweigGermany
  5. 5.Universidade Federal de São João del ReiSão João del ReiBrazil
  6. 6.Reserva Natural El HaticoCaliColombia
  7. 7.Fundación Produce MichoacánMoreliaMexico
  8. 8.FEDEGANBogotáColombia

Personalised recommendations