A Brief Review on the Use of Sentiment Analysis Approaches in Social Networks

  • Francisco Javier Ramírez-Tinoco
  • Giner Alor-Hernández
  • José Luis Sánchez-Cervantes
  • Beatriz Alejandra Olivares-Zepahua
  • Lisbeth Rodríguez-Mazahua
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 688)

Abstract

Sentiment analysis is the study of subjective information, for example, opinions, sentiments and beliefs that people express about different topics. In recent years, its importance has grown because a large amount of this type of information has been generated daily in social networks, which can be used to obtain various benefits. There are several research works about sentiment analysis, but very few of them compare the use of sentiment analysis approaches and methods among various social networks. Therefore, the objective of this document is to provide a brief review of the most relevant works related to sentiment analysis and social networks, which shows the main findings regarding the tendencies of using the main sentiment analysis approaches, methods and aspects detected in the different social networks. The review can provide a guide for researchers to know the approaches that exist and how they were used specifically in social networks.

Keywords

Facebook Sentiment Analysis Sentiment Analysis Approaches Social Networks Twitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Syst. 89, 14–46 (2015).Google Scholar
  2. 2.
    Toxtli-Hernández, C.: Computación sentimental, https://sg.com.mx/sgvirtual/sesion/computacion-sentimental#.WJLk5RvhA2w
  3. 3.
  4. 4.
    Adoreboard: Toneapi, http://toneapi.com/
  5. 5.
    Lexalytics: Semantria, https://www.lexalytics.com/semantria
  6. 6.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 5, 1093–1113 (2014).Google Scholar
  7. 7.
    Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: A review and comparative analysis of web services. Inf. Sci. (Ny). 311, 18–38 (2015).Google Scholar
  8. 8.
    Hussein, D.M.E.-D.M.: A survey on sentiment analysis challenges. J. King Saud Univ. - Eng. Sci. (2016).Google Scholar
  9. 9.
    Schouten, K., Frasincar, F.: Survey on Aspect-Level Sentiment Analysis. IEEE Trans. Knowl. Data Eng. 28, 813–830 (2016).Google Scholar
  10. 10.
    Silva, N.F.F. Da, Coletta, L.F.S., Hruschka, E.R.: A Survey and Comparative Study of Tweet Sentiment Analysis via Semi-Supervised Learning. ACM Comput. Surv. 49, 15:1–15:26 (2016).Google Scholar
  11. 11.
    Giachanou, A., Crestani, F.: Like It or Not: A Survey of Twitter Sentiment Analysis Methods. ACM Comput. Surv. 49, 28:1–28:41 (2016).Google Scholar
  12. 12.
    Korayem, M., Aljadda, K., Crandall, D.: Sentiment/subjectivity analysis survey for languages other than English. Soc. Netw. Anal. Min. 6, 75 (2016).Google Scholar
  13. 13.
    Singh, J., Singh, G., Singh, R.: A review of sentiment analysis techniques for opinionated web text. CSI Trans. ICT. 4, 241–247 (2016).Google Scholar
  14. 14.
    del Pilar Salas-Zárate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., Alor-Hernández, G.: A study on LIWC categories for opinion mining in Spanish reviews. J. Inf. Sci. 40, 749–760 (2014).Google Scholar
  15. 15.
    Van Anh, T.T., Dau, H.X.: A Crossed-domain Sentiment Analysis System for the Discovery of Current Careers from Social Networks. In: Proceedings of the Fifth Symposium on Information and Communication Technology. pp. 226–231. ACM, New York, NY, USA (2014)Google Scholar
  16. 16.
    Neethu, M.S., Rajasree, R.: Sentiment analysis in twitter using machine learning techniques. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). pp. 1–5 (2013)Google Scholar
  17. 17.
    Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. In: Proceedings of the ACL 2012 System Demonstrations. pp. 115–120. Association for Computational Linguistics, Stroudsburg, PA, USA (2012)Google Scholar
  18. 18.
    Saif, H., He, Y., Alani, H.: Semantic Sentiment Analysis of Twitter. In: Proceedings of the 11th International Conference on The Semantic Web - Volume Part I. pp. 508–524. Springer-Verlag, Berlin, Heidelberg (2012)Google Scholar
  19. 19.
    Salas-Zárate, M. del P., Paredes-Valverde, M.A., Rodriguez-García, M.Á., Valencia-García, R., Alor-Hernández, G.: Automatic detection of satire in Twitter: A psycholinguistic-based approach. Knowledge-Based Syst. 128, 20–33 (2017).Google Scholar
  20. 20.
    Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic Sentiment Analysis in Twitter: A Graph-based Hashtag Sentiment Classification Approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. pp. 1031–1040. ACM, New York, NY, USA (2011)Google Scholar
  21. 21.
    Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40, 6266–6282 (2013).Google Scholar
  22. 22.
    Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level Sentiment Analysis Incorporating Social Networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1397–1405. ACM, New York, NY, USA (2011)Google Scholar
  23. 23.
    Ortigosa, A., Martín, J.M., Carro, R.M.: Sentiment analysis in Facebook and its application to e-learning. Comput. Human Behav. 31, 527–541 (2014).Google Scholar
  24. 24.
    Ngoc, P.T., Yoo, M.: The lexicon-based sentiment analysis for fan page ranking in Facebook. In: The International Conference on Information Networking 2014 (ICOIN2014). pp. 444–448 (2014)Google Scholar
  25. 25.
    Terrana, D., Augello, A., Pilato, G.: Facebook Users Relationships Analysis Based on Sentiment Classification. In: 2014 IEEE International Conference on Semantic Computing. pp. 290–296 (2014)Google Scholar
  26. 26.
    Troussas, C., Virvou, M., Espinosa, K.J., Llaguno, K., Caro, J.: Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning. In: IISA 2013. pp. 1–6 (2013)Google Scholar
  27. 27.
    Zhao, Y., Niu, K., He, Z., Lin, J., Wang, X.: Text Sentiment Analysis Algorithm Optimization and Platform Development in Social Network. In: Proceedings of the 2013 Sixth International Symposium on Computational Intelligence and Design - Volume 01. pp. 410–413. IEEE Computer Society, Washington, DC, USA (2013)Google Scholar
  28. 28.
    Hammad, M., Al-awadi, M.: Sentiment Analysis for Arabic Reviews in Social Networks Using Machine Learning. In: Latifi, S. (ed.) Information Technology: New Generations: 13th International Conference on Information Technology. pp. 131–139. Springer International Publishing, Cham (2016)Google Scholar
  29. 29.
    Paltoglou, G., Thelwall, M.: Twitter, MySpace, Digg: Unsupervised Sentiment Analysis in Social Media. ACM Trans. Intell. Syst. Technol. 3, 1–19 (2012).Google Scholar
  30. 30.
    Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and Combining Sentiment Analysis Methods. In: Proceedings of the First ACM Conference on Online Social Networks. pp. 27–38. ACM, New York, NY, USA (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francisco Javier Ramírez-Tinoco
    • 1
  • Giner Alor-Hernández
    • 1
  • José Luis Sánchez-Cervantes
    • 2
  • Beatriz Alejandra Olivares-Zepahua
    • 1
  • Lisbeth Rodríguez-Mazahua
    • 1
  1. 1.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizabaMéxico
  2. 2.CONACYT, Instituto Tecnológico de OrizabaOrizabaMéxico

Personalised recommendations