Architecture for the integration of Linked Open Drug Data in an Augmented Reality application for mobile devices

  • Carlos Daniel Flores-Flores
  • José Luis Sánchez-Cervantes
  • Giner Alor-Hernández
  • Lisbeth Rodríguez-Mazahua
  • Luis Ángel Reyes-Hernández
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 688)

Abstract

There is an increasing amount of information contained in the knowledge bases belonging to the Linked Open Data (LOD) cloud corresponding to different domains, the exploitation of this information is limited by the ways in which it can be visualized, requiring new forms of visualization so that such information can be understood and used. Augmented Reality (AR) is a technology that allows the interaction of information with the user and also has a significant growth thanks to the proliferation of mobile devices with better processing. This work proposes an architecture for the integration of the datasets belonging to the LOD cloud with AR in an application for mobile devices, which makes it possible for information retrieved from the SPARQL-based query execution on RDF datasets, to be visualized in a way that allows improving the interaction between the user and data retrieved for increasing the understanding of the information shown.

Keywords

AR architecture Linked Open dataset LOD cloud mobile devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “The Linking Open Data cloud diagram.” [Online]. Available: http://lod-cloud.net/. [Accessed: 19-Feb-2017].
  2. 2.
    K. J. Carlson and D. J. Gagnon, “Augmented Reality Integrated Simulation Education in Health Care,” Clin. Simul. Nurs., vol. 12, no. 4, pp. 123–127, 2016.Google Scholar
  3. 3.
    S. Salmi, J. Ab, M. F. Shiratuddin, K. W. Wong, and C. L. Oskam, “Utilising Mobile-Augmented Reality for Learning Human Anatomy,” in Procedia - Social and Behavioral Sciences, 2015, vol. 197, pp. 659–668.Google Scholar
  4. 4.
    M. Samwald et al., “Linked open drug data for pharmaceutical research and development,” J. Cheminform., vol. 3, no. 1, pp. 19–24, 2011.Google Scholar
  5. 5.
    J. Kozák, M. Nečaský, J. Dědek, J. Klímek, and J. Pokorný, “Linked Open Data for Healthcare Professionals,” in Proceedings of International Conference on Information Integration and Web-based Applications & Services, 2013, pp. 400–409.Google Scholar
  6. 6.
    V. Reynolds and M. Hausenblas, “Exploiting linked open data for mobile augmented reality,” W3C Work. Augment. Real. Web, vol. 1, pp. 1–6, 2010.Google Scholar
  7. 7.
    S. Zander, C. Chiu, and G. Sageder, “A Computational Model for the Integration of Linked Data in Mobile Augmented Reality Applications,” in Proceedings of the 8th International Conference on Semantic Systems, 2012, pp. 133–140.Google Scholar
  8. 8.
    S. Vert, B. Dragulescu, and R. Vasiu, “LOD4AR: Exploring Linked Open Data with a Mobile Augmented Reality Web Application,” in Proceedings of the 2014 International Conference on Posters & Demonstrations Track - Volume 1272, 2014, pp. 185–188.Google Scholar
  9. 9.
    S. Vert and R. Vasiu, “Integrating Linked Data in Mobile Augmented Reality Applications,” in Proceedings of Information and Software Technologies: 20th International Conference, International Conference on Information Science and Technology (ICIST) 2014, Druskininkai, Lithuania, October 9-10, 2014., G. Dregvaite and R. Damasevicius, Eds. Cham: Springer International Publishing, 2014, pp. 324–333.Google Scholar
  10. 10.
    A. M. Fermoso, M. Mateos, M. E. Beato, and R. Berjón, “Open linked data and mobile devices as e-tourism tools. A practical approach to collaborative e-learning,” Comput. Human Behav., vol. 51, pp. 618–626, 2015.Google Scholar
  11. 11.
    A. Jentzsch, M. Samwald, and B. Andersson, “Linking Open Drug Data,” I-Semantics ’09 Proc. Int. Conf. Semant. Syst., pp. 3–6, 2009.Google Scholar
  12. 12.
    D. S. Wishart et al., “DrugBank: a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Res., vol. 34, no. suppl_1, pp. 668–672, 2006.Google Scholar
  13. 13.
    F. Belleau, M. A. Nolin, N. Tourigny, P. Rigault, and J. Morissette, “Bio2RDF: Towards a mashup to build bioinformatics knowledge systems,” J. Biomed. Inform., vol. 41, no. 5, pp. 706–716, 2008.Google Scholar
  14. 14.
    D. Amin and S. Govilkar, “Comparative Study of Augmented Reality Sdk’s,” Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 11–26, 2015.Google Scholar
  15. 15.
    A. Serrano, “Herramientas de desarrollo libres para aplicaciones de Realidad Aumentada con Android. Análisis comparativo entre ellas,” Universidad Politécnica de Valencia, 2012.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carlos Daniel Flores-Flores
    • 1
  • José Luis Sánchez-Cervantes
    • 2
  • Giner Alor-Hernández
    • 1
  • Lisbeth Rodríguez-Mazahua
    • 1
  • Luis Ángel Reyes-Hernández
    • 1
  1. 1.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizabaMéxico
  2. 2.CONACYT- Instituto Tecnológico de OrizabaOrizabaMéxico

Personalised recommendations