Advertisement

Stochastic Side-Channel Leakage Analysis via Orthonormal Decomposition

  • Sylvain Guilley
  • Annelie Heuser
  • Tang Ming
  • Olivier Rioul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10543)

Abstract

Side-channel attacks of maximal efficiency require an accurate knowledge of the leakage function. Template attacks have been introduced by Chari et al. at CHES 2002 to estimate the leakage function using available training data. Schindler et al. noticed at CHES 2005 that the complexity of profiling could be alleviated if the evaluator has some prior knowledge on the leakage function. The initial idea of Schindler is that an engineer can model the leakage from the structure of the circuit. However, for some thin CMOS technologies or some advanced countermeasures, the engineer intuition might not be sufficient. Therefore, inferring the leakage function based on profiling is still important. In the state-of-the-art, though, the profiling stage is conducted based on a linear regression in a non-orthonormal basis. This does not allow for an easy interpretation because the components are not independent.

In this paper, we present a method to characterize the leakage based on a Walsh-Hadamard orthonormal basis with staggered degrees, which allows for direct interpretations in terms of bits interactions. A straightforward application is the characterization of a class of devices in order to understand their leakage structure. Such information is precious for designers and also for evaluators, who can devise attack bases relevantly.

Keywords

Side-channel analysis Stochastic attacks Leakage model Pseudo-Boolean functions Orthonormal bases Leakage characterization 

Notes

Acknowledgments

Part of this work has been funded by the ANR CHIST-ERA project SECODE (Secure Codes to thwart Cyber-physical Attacks). This work was supported in part by the National Natural Science Foundation of China under Grant 61472292.

References

  1. 1.
    Banerjee, S., Roy, A.: Linear Algebra and Matrix Analysis for Statistics. Texts in Statistical Science, 1st edn. Chapman and Hall/CRC, Hoboken (2014). ISBN 978-1420095388zbMATHGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28632-5_2 CrossRefGoogle Scholar
  3. 3.
    Bruneau, N., Danger, J.-L., Guilley, S., Heuser, A., Teglia, Y.: Boosting higher-order correlation attacks by dimensionality reduction. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 183–200. Springer, Cham (2014). doi: 10.1007/978-3-319-12060-7_13 Google Scholar
  4. 4.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Chapter of the Monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press (2010)Google Scholar
  5. 5.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). doi: 10.1007/3-540-36400-5_3 CrossRefGoogle Scholar
  6. 6.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). doi: 10.1007/11894063_2 CrossRefGoogle Scholar
  7. 7.
    Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: How a symmetry metric assists side-channel evaluation - a novel model verification method for power analysis. In: Proceedings of the 14th Euromicro Conference on Digital System Design (DSD 2011), Washington, DC, pp. 674–681. IEEE Computer Society (2011)Google Scholar
  8. 8.
    Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27954-6_23 CrossRefGoogle Scholar
  9. 9.
    Heuser, A., Rioul, O., Guilley, S.: Good is not good enough. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44709-3_4 Google Scholar
  10. 10.
    Heuser, A., Schindler, W., Stöttinger, M.: Revealing side-channel issues of complex circuits by enhanced leakage models. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 1179–1184. IEEE (2012)Google Scholar
  11. 11.
    Kasper, M., Schindler, W., Stöttinger, M.: A stochastic method for security evaluation of cryptographic FPGA implementations. In: Bian, J., Zhou, Q., Athanas, P., Ha, Y., Zhao, K. (eds.) FPT, pp. 146–153. IEEE (2010)Google Scholar
  12. 12.
    Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 506–525. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42033-7_26 CrossRefGoogle Scholar
  13. 13.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_8 CrossRefGoogle Scholar
  14. 14.
    Schindler, W.: On the optimization of side-channel attacks by advanced stochastic methods. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30580-4_7 CrossRefGoogle Scholar
  15. 15.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). doi: 10.1007/11545262_3 CrossRefGoogle Scholar
  16. 16.
    Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01957-9_30 CrossRefGoogle Scholar
  17. 17.
    Zhao, H., Zhou, Y., Standaert, F.-X., Zhang, H.: Systematic construction and comprehensive evaluation of kolmogorov-smirnov test based side-channel distinguishers. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 336–352. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38033-4_24 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sylvain Guilley
    • 1
    • 2
  • Annelie Heuser
    • 3
  • Tang Ming
    • 4
  • Olivier Rioul
    • 2
  1. 1.Secure-IC S.A.S.Cesson-SévignéFrance
  2. 2.Telecom-ParisTech, LTCI, Université Paris-SaclayParisFrance
  3. 3.CNRS, IRISARennesFrance
  4. 4.Wuhan UniversityWuhanChina

Personalised recommendations