New Algorithm for Modeling S-box in MILP Based Differential and Division Trail Search

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10543)

Abstract

This paper studies an automated differential-trail search against block ciphers in which the problem of finding the optimal trail is converted to one of finding the optimal solution in a mixed-integer-linear programming (MILP). The most difficult part is representing differential properties of an S-box, known as differential distribution table (DDT), with a system of inequalities. Previous work builds the system by using a general-purpose mathematical tool, SAGE Math. However, the generated system for general-purpose contains a lot of redundant inequalities for the purpose of differential-trail search, thus inefficient. Hence, an auxiliary algorithm was introduced to minimize the number of inequalities by hoping that it minimizes the runtime to solve the MILP. This paper proposes a new algorithm to improve this auxiliary algorithm. The main advantage is that while the previous algorithm does not ensure the minimum number of inequalities, the proposed algorithm does ensure it. Moreover it enables the users to choose the number of inequalities in the system. In addition, this paper experimentally shows that the above folklore “minimizing the number of inequalities minimizes the runtime” is not always correct. The proposed algorithm can also be used in the MILP-based division-trail search, which evaluates the bit-based division property for integral attacks.

Keywords

Differential trail Division trail Automated search tool S-box Mixed integer linear programming Greedy algorithm 

References

  1. 1.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993). doi:10.1007/978-1-4613-9314-6 CrossRefMATHGoogle Scholar
  2. 2.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34704-7_5 CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2_31 CrossRefGoogle Scholar
  4. 4.
    Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0_2 Google Scholar
  5. 5.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (Related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_9 Google Scholar
  6. 6.
    Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014)Google Scholar
  7. 7.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25286-0_1 CrossRefGoogle Scholar
  8. 8.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_23 CrossRefGoogle Scholar
  9. 9.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6_22 CrossRefGoogle Scholar
  10. 10.
    Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4_14 CrossRefGoogle Scholar
  11. 11.
    Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new lightweight block cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6_22 CrossRefGoogle Scholar
  12. 12.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_22 CrossRefGoogle Scholar
  13. 13.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21554-4_19 CrossRefGoogle Scholar
  14. 14.
    Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998). doi:10.1007/3-540-69710-1_15 CrossRefGoogle Scholar
  15. 15.
    Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: lilliput. IEEE Trans. Comput. 65, 2074–2089 (2015)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48800-3_17 CrossRefGoogle Scholar
  17. 17.
    Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M.: Minalpher v1.1. Submitted to CAESAR (2015)Google Scholar
  18. 18.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Cryptology ePrint Archive, Report 2014/084 (2014)Google Scholar
  19. 19.
    Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_5 CrossRefGoogle Scholar
  20. 20.
    Gurobi Optimization Inc.: Gurobi Optimizer 6.5. Official webpage (2015). http://www.gurobi.com/
  21. 21.
    Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 3.2. Technical report 15–60, ZIB, Takustr. 7, 14195 Berlin (2016)Google Scholar
  22. 22.
    Ilog, I.: IBM ILOG CPLEX Optimization Studio V12.7.0 documentation. Official webpage (2016). https://www-01.ibm.com/software/websphere/products/optimization/cplex-studio-community-edition/
  23. 23.
    Sasaki, Y., Todo, Y.: New differential bounds and division property of shape lilliput: block cipher with extended generalized Feistel network. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, Springer, (to appear 2016). Pre-proceedings version was distributed at the workshopGoogle Scholar
  24. 24.
    Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7_15 CrossRefGoogle Scholar
  25. 25.
    Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13858-4_2 CrossRefGoogle Scholar
  26. 26.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_12 Google Scholar
  27. 27.
    Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). doi:10.1007/978-3-662-52993-5_18 CrossRefGoogle Scholar
  28. 28.
    Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6_24 CrossRefGoogle Scholar
  29. 29.
    Sun, L., Wang, W., Liu, R., Wang, M.: MILP-Aided Bit-Based Division Property for ARX-Based Block Cipher. Cryptology ePrint Archive, Report 2016/1101 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesMusashino-shiJapan

Personalised recommendations