Advertisement

Arterial Pressure Waveform Analysis on Cardiac Output Monitoring

  • Manuel Ignacio Monge García
  • Arnoldo Santos
Chapter
Part of the Lessons from the ICU book series (LEICU)

Abstract

Among the current methods available for cardiac output monitoring, arterial pressure waveform analysis (APWA) is one of the most widely used. This technique allows the continuous estimation of cardiac output under the premise that there is a predictable relationship between arterial pressure and stroke volume. However, as the arterial pressure is the result of interaction between ventricular ejection and the arterial system, how the arterial system is characterized will ultimately define the characteristics and limitations of each APWA algorithm.

This chapter will describe the physiological assumptions of the APWA to understand the benefits and limitations of this technology, in order to use it appropriately to improve patient care.

Keywords

Cardiac output Arterial pressure Hemodynamic monitoring Pulse pressure analysis Pulse contour analysis Arterial waveform analysis 

References

  1. 1.
    Erlanger J, Hooker DR. An experimental study of blood-pressure and of pulse-pressure in man. Johns Hopkins Hosp Rep; 1904.Google Scholar
  2. 2.
    Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, Richard C, Teboul JL. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine. Crit Care Med. 2011;39:1394–9.CrossRefGoogle Scholar
  3. 3.
    Monge Garcia MI, Saludes Orduna P, Cecconi M. Understanding arterial load. Intensive Care Med. 2016;42:1625–7.CrossRefGoogle Scholar
  4. 4.
    Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech. 1984;17:425–35.CrossRefGoogle Scholar
  5. 5.
    Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.CrossRefGoogle Scholar
  6. 6.
    Monge Garcia MI, Romero MG, Cano AG, Rhodes A, Grounds RM, Cecconi M. Impact of arterial load on the agreement between pulse pressure analysis and esophageal Doppler. Crit Care. 2013;17:R113.CrossRefGoogle Scholar
  7. 7.
    Geerts BF, Aarts LP, Jansen JR. Methods in pharmacology: measurement of cardiac output. Br J Clin Pharmacol. 2011;71:316–30.CrossRefGoogle Scholar
  8. 8.
    Thiele RH, Durieux ME. Arterial waveform analysis for the anesthesiologist: past, present, and future concepts. Anesth Analg. 2011;113:766–76.CrossRefGoogle Scholar
  9. 9.
    Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113:751–7.CrossRefGoogle Scholar
  10. 10.
    Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;108:615.CrossRefGoogle Scholar
  11. 11.
    Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. The effects of vasodilation on cardiac output measured by PiCCO. J Cardiothorac Vasc Anesth. 2008;22:688–92.CrossRefGoogle Scholar
  12. 12.
    Johansson A, Chew M. Reliability of continuous pulse contour cardiac output measurement during hemodynamic instability. J Clin Monit Comput. 2007;21:237–42.CrossRefGoogle Scholar
  13. 13.
    Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg. 2003;96:1245–7.CrossRefGoogle Scholar
  14. 14.
    Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.CrossRefGoogle Scholar
  15. 15.
    Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M, Scholz J, Doerges V. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105:107–13.CrossRefGoogle Scholar
  16. 16.
    De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, Ching W, Michard F, Vincent JL. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37(2):233–40.CrossRefGoogle Scholar
  17. 17.
    Biais M, Mazocky E, Stecken L, Pereira B, Sesay M, Roullet S, Quinart A, Sztark F. Impact of systemic vascular resistance on the accuracy of the pulsioflex device. Anesth Analg. 2017;124:487–93.CrossRefGoogle Scholar
  18. 18.
    Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput. 2012;26:267–78.CrossRefGoogle Scholar
  19. 19.
    Cecconi M, Rhodes A. Pulse pressure analysis: to make a long story short. Crit Care. 2010;14:175.CrossRefGoogle Scholar
  20. 20.
    Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131–41.CrossRefGoogle Scholar
  21. 21.
    Montenij LJ, de Waal EE, Buhre WF. Arterial waveform analysis in anesthesia and critical care. Curr Opin Anaesthesiol. 2011;24:651–6.CrossRefGoogle Scholar
  22. 22.
    Nichols WW, O'Rourke M. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. London: Oxford University Press; 2005.Google Scholar
  23. 23.
    Gruenewald M, Meybohm P, Renner J, Broch O, Caliebe A, Weiler N, Steinfath M, Scholz J, Bein B. Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output. Crit Care. 2011;15:R22.CrossRefGoogle Scholar
  24. 24.
    Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36:434–40.CrossRefGoogle Scholar
  25. 25.
    Gopal S, Do T, Pooni JS, Martinelli G. Validation of cardiac output studies from the Mostcare compared to a pulmonary artery catheter in septic patients. Minerva Anestesiol. 2014;80:314–23.PubMedGoogle Scholar
  26. 26.
    Eleftheriadis S, Galatoudis Z, Didilis V, Bougioukas I, Schon J, Heinze H, Berger KU, Heringlake M. Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo-derived cardiac output measurements: a prospective comparison study. Crit Care. 2009;13:R179.CrossRefGoogle Scholar
  27. 27.
    Magder S. Invasive intravascular hemodynamic monitoring: technical issues. Crit Care Clin. 2007;23:401–14.CrossRefGoogle Scholar
  28. 28.
    He HW, Liu DW, Long Y, Wang XT, Zhao ML, Lai XL. The effect of variable arterial transducer level on the accuracy of pulse contour waveform-derived measurements in critically ill patients. J Clin Monit Comput. 2016;30:569–75.CrossRefGoogle Scholar
  29. 29.
    Romagnoli S, Ricci Z, Quattrone D, Tofani L, Tujjar O, Villa G, Romano SM, De Gaudio AR. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18:644.CrossRefGoogle Scholar
  30. 30.
    Penaz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res. 1992;41:5–10.PubMedGoogle Scholar
  31. 31.
    Monnet X, Picard F, Lidzborski E, Mesnil M, Duranteau J, Richard C, Teboul JL. The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care. 2012;16:R212.CrossRefGoogle Scholar
  32. 32.
    Fischer MO, Avram R, Carjaliu I, Massetti M, Gerard JL, Hanouz JL, Fellahi JL. Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth. 2012;109:514–21.CrossRefGoogle Scholar
  33. 33.
    Cecconi M, Malbrain ML. Cardiac output obtained by pulse pressure analysis: to calibrate or not to calibrate may not be the only question when used properly. Intensive Care Med. 2013;39:787–9.CrossRefGoogle Scholar
  34. 34.
    Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111.CrossRefGoogle Scholar

Copyright information

© European Society of Intensive Care Medicine 2019

Authors and Affiliations

  • Manuel Ignacio Monge García
    • 1
  • Arnoldo Santos
    • 2
    • 3
  1. 1.Unidad de Cuidados Intensivos, Hospital SAS de Jerez de la FronteraJerez de la FronteraSpain
  2. 2.CIBER de enfermedades respiratorias (CIBERES)MadridSpain
  3. 3.Hedenstierna Laboratory, Surgical Sciences DepartmentUppsala UniversityUppsalaSweden

Personalised recommendations