Generalised and Versatile Connected Health Solution on the Zynq SoC

  • Dina  Ganem Abunahia
  • Hala Raafat Abou Al Ola
  • Tasnim Ahmad Ismail
  • Abbes Amira
  • Amine Ait Si Ali
  • Faycal Bensaali
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 751)


This chapter presents a generalized and versatile connected health solution for patient monitoring. It consists of a mobile system that can be used at home, an ambulance and a hospital. The system uses the Shimmer sensor device to collect three axes (x, y and z) accelerometer data as well as electrocardiogram signals. The accelerometer data is used to implement a fall detection system using the k-Nearest Neighbors classifier. The classification algorithm is implemented on various platforms including a PC and the Zynq system on chip platform where both programmable logic and processing system of the Zynq are explored. In addition, the electrocardiogram signals are used to extract vital information, the signals are also encrypted using the Advanced Encryption Standard and sent wirelessly using Wi-Fi for further processing. Implementation results have shown that the best overall accuracy reaches 90% for the fall detection while meeting real-time performances when implemented on the Zynq and while using only 48% of Look-up Tables and 22% of Flip-Flops available on chip.



This paper was made possible by National Priorities Research Program (NPRP) grant No. 5-080-2-028 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.


  1. 1.
    Beard, J.R., Officer, A., de Carvalho, I.A., Sadana, R., Pot, A.M., Michel, J.P., Lloyd-Sherlock, P., Epping-Jordan, J.E., Peeters, G.G., Mahanani, W.R., et al.: The world report on ageing and health: a policy framework for healthy ageing. The Lancet 387(10033), 2145–2154 (2016)Google Scholar
  2. 2.
    Bromiley, P., Courtney, P., Thacker, N.: Design of a visual system for detecting natural events by the use of an independent visual estimate: a human fall detector. Empirical Eval. Methods Comput. Vis. 50 (2002)Google Scholar
  3. 3.
    Burns, A., Greene, B.R., McGrath, M.J., O’Shea, T.J., Kuris, B., Ayer, S.M., Stroiescu, F., Cionca, V.: Shimmer-a wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10(9), 1527–1534 (2010)Google Scholar
  4. 4.
    Counsell, S.R.: 2015 updated ags beers criteria offer guide for safer medication use among older adults. J. Gerontological Nurs. 41(11), 60 (2015)Google Scholar
  5. 5.
    Crockett, L.H., Elliot, R.A., Enderwitz, M.A., Stewart, R.W.: The Zynq book: embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic Media (2014)Google Scholar
  6. 6.
    Kepski, M., Kwolek, B.: Fall detection on embedded platform using kinect and wireless accelerometer. In: International Conference on Computers for Handicapped Persons, pp. 407–414. Springer (2012)Google Scholar
  7. 7.
    Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and approaches. Neurocomputing 100, 144–152 (2013)Google Scholar
  8. 8.
    Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition ICPR 2004, vol. 4, pp. 323–326. IEEE (2004)Google Scholar
  9. 9.
    Nguyen, H.T.K., Belleudy, C., Van Tuan, P.: Fall detection application on an arm and fpga heterogeneous computing platform. Int. J. Adv. Res. Electr. Electr. Instrum. Eng. 3(8), 11349–11357 (2014)Google Scholar
  10. 10.
    Ozcan, K., Velipasalar, S.: Wearable camera-and accelerometer-based fall detection on portable devices. IEEE Embed. Syst. Lett. 8(1), 6–9 (2016)Google Scholar
  11. 11.
    Özdemir, A.T., Barshan, B.: Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6), 10691–10708 (2014)Google Scholar
  12. 12.
    Patel, K.V., Brennan, K.L., Davis, M.L., Jupiter, D.C., Brennan, M.L.: High-energy femur fractures increase morbidity but not mortality in elderly patients. Clin. Orthop. Relat. Res. 472(3), 1030–1035 (2014)Google Scholar
  13. 13.
    Stevens, J.A., Hasbrouck, L., Durant, T.M., Dellinger, A.M., Batabyal, P.K., Crosby, A.E., Valluru, B.R.: Kresnow, M.j., Guerrero, J.L.: Surveillance for injuries and violence among older adults. MMWR CDC Surveill. Summ. 48(8), 27–50 (1999)Google Scholar
  14. 14.
    Toreyin, B.U., Soyer, E.B., Onaran, I., Cetin, A.E.: Falling person detection using multisensor signal processing. EURASIP J. Adv. Signal Process. 2008, 29 (2008)Google Scholar
  15. 15.
    Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemedicine Appl. 2015, 2 (2015)Google Scholar
  16. 16.
    Xilinx, Inc.: Zynq-7000 all programmable soc: technical reference manual. ug585, vo1. 8.1. (2014). Accessed 30 Sep 2016

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dina  Ganem Abunahia
    • 1
  • Hala Raafat Abou Al Ola
    • 1
  • Tasnim Ahmad Ismail
    • 1
  • Abbes Amira
    • 1
  • Amine Ait Si Ali
    • 1
    • 2
  • Faycal Bensaali
    • 1
  1. 1.College of EngineeringQatar UniversityDohaQatar
  2. 2.Department of Computer and Information SciencesUniversity of NorthumbriaNewcastleUK

Personalised recommendations