Structured Sentiment Analysis

  • Abdulqader AlmarsEmail author
  • Xue Li
  • Xin Zhao
  • Ibrahim A. Ibrahim
  • Weiwei Yuan
  • Bohan Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10604)


Extracting the latent structure of the aspects and the sentiment polarities is important as it helps customers to understand people’ preference to a certain product and show the reasons why they prefer this product. However, insufficient studies have been done to effectively reveal the structure sentiment of the aspects from short texts due to the shortness and sparsity. In this paper, we propose a structured sentiment analysis (SSA) approach to understand the sentiments and opinions expressed by people in short texts. The proposed SSA approach has three advantages: (1) automatically extracts a hierarchical tree of a product’s hot aspects from short texts; (2) hierarchically analyses people’s opinions on those aspects; and (3) generates a summary and evidences of the results. We evaluate our approach on popular products. The experimental results show that the proposed approach can effectively extract a sentiment tree from short texts.


Hierarchical structure Sentiment analysis Sentiment tree Topic model 


  1. 1.
    Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. arXiv preprint arXiv:0710.0845 (2007)
  2. 2.
    Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)zbMATHGoogle Scholar
  3. 3.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  4. 4.
    Kim, J.H., Kim, D., Kim, S., Oh, A.: Modeling topic hierarchies with the recursive Chinese restaurant process. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 783–792. ACM (2012)Google Scholar
  5. 5.
    Kim, S., Zhang, J., Chen, Z., Oh, A.H., Liu, S.: A hierarchical aspect-sentiment model for online reviews. In: AAAI (2013)Google Scholar
  6. 6.
    Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 375–384. ACM (2009)Google Scholar
  7. 7.
    Paisley, J., Wang, C., Blei, D.M., Jordan, M.I.: Nested hierarchical dirichlet processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2), 256–270 (2015)CrossRefGoogle Scholar
  8. 8.
    Phan, X.H., Nguyen, C.T., Le, D.T., Nguyen, L.M., Horiguchi, S., Ha, Q.T.: A hidden topic-based framework toward building applications with short web documents. IEEE Trans. Knowl. Data Eng. 23(7), 961–976 (2011)CrossRefGoogle Scholar
  9. 9.
    Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Kao, A., Poteet, S.R. (eds.) Natural Language Processing and Text Mining, pp. 9–28. Springer, London (2007)CrossRefGoogle Scholar
  10. 10.
    Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models. In: ICWSM, vol. 10, pp. 1–1 (2010)Google Scholar
  11. 11.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a large ontology from Wikipedia and WordNet. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 203–217 (2008)CrossRefGoogle Scholar
  12. 12.
    Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, pp. 111–120. ACM (2008)Google Scholar
  13. 13.
    Wang, C., Danilevsky, M., Desai, N., Zhang, Y., Nguyen, P., Taula, T., Han, J.: A phrase mining framework for recursive construction of a topical hierarchy. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 437–445. ACM (2013)Google Scholar
  14. 14.
    Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: finding topic-sensitive influential Twitterers. In: Proceedings of the third ACM International Conference on Web Search and Data Mining, pp. 261–270. ACM (2010)Google Scholar
  15. 15.
    Zhao, P., Li, X., Wang, K.: Feature extraction from micro-blogs for comparison of products and services. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8180, pp. 82–91. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41230-1_7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abdulqader Almars
    • 1
    Email author
  • Xue Li
    • 1
  • Xin Zhao
    • 1
  • Ibrahim A. Ibrahim
    • 1
  • Weiwei Yuan
    • 2
  • Bohan Li
    • 2
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations