Abstract Games of Argumentation Strategy and Game-Theoretical Argument Strength

  • Pietro Baroni
  • Giulia Comini
  • Antonio Rago
  • Francesca Toni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10621)

Abstract

We define a generic notion of abstract games of argumentation strategy for (attack-only and bipolar) argumentation frameworks, which are zero-sum games whereby two players put forward sets of arguments and get a reward for their combined choices. The value of these games, in the classical game-theoretic sense, can be used to define measures of (quantitative) game-theoretic strength of arguments, which are different depending on whether either or both players have an “agenda” (i.e. an argument they want to be accepted). We show that this general scheme captures as a special instance a previous proposal in the literature (single agenda, attack-only frameworks), and seamlessly supports the definition of a spectrum of novel measures of game-theoretic strength where both players have an agenda and/or bipolar frameworks are considered. We then discuss the applicability of these instances of game-theoretic strength in different contexts and analyse their basic properties.

References

  1. 1.
    Amgoud, L., Ben-Naim, J.: Axiomatic foundations of acceptability semantics. In: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, KR 2016, pp. 2–11. AAAI Press (2016)Google Scholar
  2. 2.
    Amgoud, L., Ben-Naim, J.: Evaluation of arguments from support relations: Axioms and semantics. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016. AAAI Press (2016)Google Scholar
  3. 3.
    Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.-C., Livet, P.: On bipolarity in argumentation frameworks. Int. J. Intell. Syst. 23(10), 1062–1093 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argument Comput. 6(1), 24–49 (2015)CrossRefMATHGoogle Scholar
  5. 5.
    Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: Argumentation ranking semantics based on propagation. In: Computational Models of Argument - Proceedings of COMMA, 139–150 (2016)Google Scholar
  6. 6.
    Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: A comparative study of ranking-based semantics for abstract argumentation. In: Proceedings of the 13th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 914–920 (2016)Google Scholar
  7. 7.
    Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Stud. Logica. 93(2–3), 109–145 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/11518655_33 CrossRefGoogle Scholar
  9. 9.
    Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar abstract argumentation systems. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence. Springer, Boston, MA (2009). doi:10.1007/978-0-387-98197-0_4 Google Scholar
  10. 10.
    Cohen, A., Gottifredi, S., García, A.J., Simari, G.R.: A survey of different approaches to support in argumentation systems. Knowl. Eng. Rev. 29(5), 513–550 (2014)CrossRefGoogle Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grossi, D., Modgil, S.: On the graded acceptability of arguments. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 868–874. AAAI Press (2015)Google Scholar
  13. 13.
    Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 2287–2292. AAAI Press (2011)Google Scholar
  14. 14.
    Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87803-2_24 CrossRefGoogle Scholar
  15. 15.
    Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 63–73. AAAI Press (2016)Google Scholar
  16. 16.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. (German) (On the theory of games of strategy). Mathematische Annalen 100, 295–320 (1928). (German)Google Scholar
  17. 17.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Università degli Studi di BresciaBresciaItaly
  2. 2.Imperial College LondonLondonUK

Personalised recommendations