Quantitative Argumentation Debates with Votes for Opinion Polling

  • Antonio RagoEmail author
  • Francesca Toni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10621)


Opinion polls are used in a variety of settings to assess the opinions of a population, but they mostly conceal the reasoning behind these opinions. Argumentation, as understood in AI, can be used to evaluate opinions in dialectical exchanges, transparently articulating the reasoning behind the opinions. We give a method integrating argumentation within opinion polling to empower voters to add new statements that render their opinions in the polls individually rational while at the same time justifying them. We then show how these poll results can be amalgamated to give a collectively rational set of voters in an argumentation framework. Our method relies upon Quantitative Argumentation Debate for Voting (QuAD-V) frameworks, which extend QuAD frameworks (a form of bipolar argumentation frameworks in which arguments have an intrinsic strength) with votes expressing individuals’ opinions on arguments.


  1. 1.
    Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Automatic evaluation of design alternatives with quantitative argumentation. Argum. Comput. 6(1), 24–49 (2015). CrossRefzbMATHGoogle Scholar
  2. 2.
    Bessette, J.: Deliberative democracy: the majority principle in Republican government. How Democr. Const. 102, 109–111 (1980)Google Scholar
  3. 3.
    Buckingham-Shum, S.: Cohere: towards web 2.0 argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008, pp. 97–108 (2008).
  4. 4.
    Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Studia Log. 93(2–3), 109–145 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cartwright, D., Atkinson, K.: Political engagement through tools for argumentation. In: Computational Models of Argument: Proceedings of COMMA 2008, Toulouse, France, 28–30 May 2008. pp. 116–127 (2008).
  6. 6.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 378–389. Springer, Heidelberg (2005). doi: 10.1007/11518655_33 CrossRefGoogle Scholar
  7. 7.
    Conklin, J., Selvin, A.M., Shum, S.B., Sierhuis, M.: Facilitated hypertext for collective sensemaking: 15 years on from gIBIS. In: Proceedings of the 12th ACM Conference on Hypertext and Hypermedia, pp. 123–124 (2001).
  8. 8.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fishkin, J.S., Luskin, R.C., Jowell, R.: Deliberative polling and public consultation. Parliam. Aff. 53(4), 657–666 (2000)CrossRefGoogle Scholar
  11. 11.
    Ganzer-Ripoll, J., López-Sánchez, M., Rodriguez-Aguilar, J.A.: A multi-agent argumentation framework to support collective reasoning. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS, vol. 10238, pp. 100–117. Springer, Cham (2017). doi: 10.1007/978-3-319-57285-7_7 CrossRefGoogle Scholar
  12. 12.
    Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and burden of proof. Artif. Intell. 171(10–15), 875–896 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gordon, T.F., Richter, G.: Discourse support systems for deliberative democracy. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 248–255. Springer, Heidelberg (2002). doi: 10.1007/978-3-540-46138-8_40 CrossRefGoogle Scholar
  14. 14.
    Krauthoff, T., Baurmann, M., Betz, G., Mauve, M.: Dialog-based online argumentation. In: Computational Models of Argument - Proceedings of COMMA 2016, Potsdam, Germany, 12–16 September 2016, pp. 33–40 (2016).
  15. 15.
    Kunz, W., Rittel, H.W.: Issues as Elements of Information Systems, vol. 131. Institute of Urban and Regional Development, University of California Berkeley (1970)Google Scholar
  16. 16.
    Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 2287–2292 (2011).
  17. 17.
    Loukis, E., Xenakis, A., Tseperli, N.: Using argument visualization to enhance e-participation in the legislation formation process. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 125–138. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03781-8_12 CrossRefGoogle Scholar
  18. 18.
    Luna, G.D.I., López-López, A., Pérez, J.: Predicting preferences of voters from opinion polls by machine learning and game theory. Res. Comput. Sci. 77, 121–131 (2014).
  19. 19.
    Mouffe, C.: Deliberative democracy or agonistic pluralism? Soc. Res. 3, 745–758 (1999)Google Scholar
  20. 20.
    Patkos, T., Bikakis, A., Flouris, G.: A multi-aspect evaluation framework for comments on the social web. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 593–596 (2016).
  21. 21.
    Rago, A., Toni, F., Aurisicchio, M., Baroni, P.: Discontinuity-free decision support with quantitative argumentation debates. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 63–73 (2016).
  22. 22.
    Simari, G.R., Rahwan, I. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Thapen, N.A., Ghanem, M.M.: Towards passive political opinion polling using Twitter. In: Proceedings of the BCS SGAI Workshop on Social Media Analysis 2013 Co-Located with 33rd Annual International Conference of the British Computer Society’s Specialist Group on Artificial Intelligence (BCS SGAI 2013), Cambridge, UK, 10 December 2013, pp. 19–34 (2013).
  24. 24.
    Zhu, J., Wang, H., Zhu, M., Tsou, B.K., Ma, M.Y.: Aspect-based opinion polling from customer reviews. IEEE Trans. Affect. Comput. 2(1), 37–49 (2011). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonLondonUK

Personalised recommendations