Advertisement

Symbiogenesis and Cell Evolution: An Anti-Darwinian Research Agenda?

  • Ulrich Kutschera
Chapter

Abstract

In 1905, Constantin S. Mereschkowsky (1855–1921) proposed that the green organelles (chloroplasts) of algae and land plants evolved from ancient, once free-living cyanobacteria. This endosymbiotic hypothesis was based on numerous lines of evidence. In a 1910 paper, Mereschkowsky argued that the time has come to introduce a new theory on the origin of living beings; since Darwin’s era, so many new findings have accumulated that now an alternative, anti-selectionist theory of evolution has to be established. Based on the principle of symbiosis (i.e., the union of two different organisms whereby both partners mutually benefit), Mereschkowsky coined the term “symbiogenesis theory,” which is based on an analogy between the feeding process of amoebae and cellular events that may have occurred in the ancient oceans. Mereschkowsky’s symbiogenesis hypothesis explains the origin of chloroplasts from archaic cyanobacteria, with respect to plant evolution. In 1927, the Russian cytologist Ivan E. Wallin (1883–1969) proposed that the mitochondria of eukaryotic cells are descendants of ancient, once free-living bacteria. Here, I outline the origin and current status of the Mereschkowsky–Wallin concept of symbiogenesis (primary and secondary endosymbiosis) and explain why it is compatible with the Darwin–Wallace principle of natural selection, which is described in detail. Nevertheless, largely due to the work of Lynn Margulis (1938–2011), symbiogenesis is still considered today as an Anti-Darwinian research program. I will summarize evidence indicating that symbiogenesis, natural selection, and the dynamic Earth (plate tectonics) represent key processes that caused major macro-evolutionary transitions during the 3500-million-year-long history of life on Earth.

Keywords

Charles Darwin Dynamic Earth Macroevolution Natural selection Symbiogenesis Synade model 

Notes

Acknowledgements

I thank two anonymous reviewers for helpful comments on an earlier version of the manuscript and the Alexander von Humboldt-Stiftung (Bonn, Germany) for financial support (AvH-fellowship 2013, Stanford, CA, USA).

References

  1. Allwood AC (2016) Geology: evidence of life in Earth’s oldest rocks. Nature 537:500–501CrossRefGoogle Scholar
  2. Altmann R (1890) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Verlag von Veit, LeipzigGoogle Scholar
  3. Archibald JA (2014) One plus one equals one: symbiosis and the evolution of complex life. Oxford University Press, OxfordGoogle Scholar
  4. Barnes RSK (ed) (1998) The diversity of living organisms. Blackwell, OxfordGoogle Scholar
  5. Bell G (1997) Selection: the mechanism of evolution. Chapman and Hall, New YorkCrossRefGoogle Scholar
  6. Carrapiço F (2010) How symbiogenic is evolution? Theory Biosci 129:135–139CrossRefGoogle Scholar
  7. Carrapiço F (2015) Can we understand evolution without symbiogenesis? In: Gontier N (ed) Reticulate evolution. Interdisciplinary evolution research, vol 3. Springer, Cham, pp 81–105CrossRefGoogle Scholar
  8. Carroll SB (2006) The making of the fittest. DNA and the ultimate forensic record of evolution. WW Norton, New YorkGoogle Scholar
  9. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182CrossRefGoogle Scholar
  10. Cavalier-Smith T (2013) Symbiogenesis: mechanisms, evolutionary consequences and systematic implications. Annu Rev Ecol Evol Syst 44:145–172CrossRefGoogle Scholar
  11. Charbonneau MR (2016) A microbial perspective of human developmental biology. Nature 535:48–55CrossRefGoogle Scholar
  12. Cutler A (2003) The seashell on the mountaintop. Dutton, New YorkGoogle Scholar
  13. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  14. Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  15. Depew DJ (2017) Darwinism in the 20th century: productive encounters with saltation, acquired characteristics, and development. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 61–88CrossRefGoogle Scholar
  16. Dobzhansky T (1955) Evolution, genetics, and man. Wiley, New YorkGoogle Scholar
  17. Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJGoogle Scholar
  18. Geus A, Höxtermann E (Hg) (2007) Evolution durch Kooperation und Integration. Zur Entstehung der Endosymbiosetheorie in der Zellbiologie. Basilisken-Presse, MarburgGoogle Scholar
  19. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  20. Gregory TR (2008) Evolution as fact, theory and path. Evol Educ Outreach 1:46–52CrossRefGoogle Scholar
  21. Haeckel E (1866) Generelle Morphologie der Organismen, vol I/II. Georg Reimer, BerlinCrossRefGoogle Scholar
  22. Haeckel E (1877) Anthropogenie oder Entwicklungsgeschichte des Menschen. W. Engelmann, LeipzigGoogle Scholar
  23. Haffer J (2007) Ornithologie, evolution, and philosophy. The life and science of Ernst Mayr 1904–2005. Springer, BerlinGoogle Scholar
  24. Hagemann R (2007) The reception of the Schimper-Mereschkowsky endosymbiont hypothesis on the origin of plastids—between 1883 and 1960—many negative, but a few relevant positive reactions. Ann Hist Philos Biol 12:41–59Google Scholar
  25. Hossfeld U (2010) Ernst Haeckel. Biographienreihe absolute. Orange, Freiburg i. BrGoogle Scholar
  26. Irving E (2005) The role of latitude in mobilism debates. Proc Natl Acad Sci USA 102:1821–1828CrossRefGoogle Scholar
  27. Kleinig H, Sitte P (1986) Zellbiologie. Ein Lehrbuch. 2. Auflage. Verlag Gustav Fischer, StuttgartGoogle Scholar
  28. Klingsolver JG, Pfennig D (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572CrossRefGoogle Scholar
  29. Knoll AH (2003) Life on a young planet. The first three billion years of evolution on earth. Princeton University Press, Princeton, NJGoogle Scholar
  30. Kozo-Polyansky BM (1924) Symbiogenesis: a new principle of evolution. Marshall University, Huntington, WVGoogle Scholar
  31. Kropotkin P (1902) Mutual aid. A factor of evolution. Free Press, LondonGoogle Scholar
  32. Kutschera U (2003) A comparative analysis of the Darwin-Wallace papers and the development of the concept of natural selection. Theory Biosci 122:343–359CrossRefGoogle Scholar
  33. Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78CrossRefGoogle Scholar
  34. Kutschera U (2008a) Darwin-Wallace principle of natural selection. Nature 453:27CrossRefGoogle Scholar
  35. Kutschera U (2008b) From Darwinism to evolutionary biology. Science 321:1157–1158CrossRefGoogle Scholar
  36. Kutschera U (2009a) Symbiogenesis, natural selection, and the dynamic earth. Theory Biosci 128:191–203CrossRefGoogle Scholar
  37. Kutschera U (2009b) Charles Darwin’s Origin of Species, directional selection, and the evolutionary sciences today. Naturwissenschaften 96:1247–1263CrossRefGoogle Scholar
  38. Kutschera U (2011a) Darwiniana Nova. Verborgene Kunstformen der Natur. LIT, BerlinGoogle Scholar
  39. Kutschera U (2011b) From the scala naturae to the symbiogenetic and dynamic tree of life. Biol Direct 6(33):1–20Google Scholar
  40. Kutschera U (2015a) Evolutionsbiologie. Ursprung und Stammesentwicklung der Organismen. 4. Auflage. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  41. Kutschera U (2015b) A prescient view of women in evolution. Nature 523:35CrossRefGoogle Scholar
  42. Kutschera U (2016) Haeckel’s 1866 tree of life and the origin of eukaryotes. Nat Microbiol 1:16114CrossRefGoogle Scholar
  43. Kutschera U (2017) Evolution. Reference module in life sciences. Article 06399. Elsevier, pp 1–5Google Scholar
  44. Kutschera U, Hossfeld U (2013) Alfred Russel Wallace (1823−1913): the forgotten co-founder of the Neo-Darwinian theory of biological evolution. Theory Biosci 132:207–214CrossRefGoogle Scholar
  45. Kutschera U, Khanna R (2016) Plant gnotobiology: epiphytic microbes and sustainable agriculture. Plant Signal Behav 11(12):e1256529, 1–4CrossRefGoogle Scholar
  46. Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276CrossRefGoogle Scholar
  47. Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24CrossRefGoogle Scholar
  48. Kutschera U, Niklas KJ (2008) Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 127:277–289CrossRefGoogle Scholar
  49. LeGrand HE (1988) Drifting continents and shifting theories. Cambridge University Press, CambridgeGoogle Scholar
  50. Mallard C, Coltice N, Seton M, Muller RD, Tackley PJ (2016) Subduction controls the distribution and fragmentation on Earth’s tectonic plates. Nature 353:140–143CrossRefGoogle Scholar
  51. Margulis L (1993) Symbiosis in cell evolution. Microbial communities in the Archean and Proterozoic eons, 2nd edn. WH Freeman, New YorkGoogle Scholar
  52. Margulis L (2010) Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). Paleontol J 44:1525–1539CrossRefGoogle Scholar
  53. Margulis L, Sagan D (2002) Acquiring genomes: a theory of the origin of species. Basic Books, New YorkGoogle Scholar
  54. Margulis L, Schwartz KV (1998) Five kingdoms. An illustrated guide to the phyla of life on earth, 3rd edn. WH Freeman, New YorkGoogle Scholar
  55. Martin WF, Cerff R (2017) Physiology, phylogeny, early evolution and GAPDH. Protoplasma 254:1823–1834CrossRefGoogle Scholar
  56. Martin RE, Quigg A (2012) Evolving phytoplankton stoichiometry fuelled diversification of the marine biosphere. Geosciences 2:130–146CrossRefGoogle Scholar
  57. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B 370:20140330CrossRefGoogle Scholar
  58. Mayr E (1984) The growth of biological thought. Diversity, evolution and inheritance. Harvard University Press, CambridgeGoogle Scholar
  59. Mayr E (2001) What evolution is. Basic, New YorkGoogle Scholar
  60. Mayr E (2004) What makes biology unique? Considerations on the autonomy of a scientific discipline. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. McInnerney JO, O’Connell MJ (2017) Microbiology: mind the gaps in cellular evolution. Nature 541:297–299CrossRefGoogle Scholar
  62. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604, 689–691Google Scholar
  63. Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30:278–303, 321–347, 353–367Google Scholar
  64. Mereschkowsky C (1920) La plante considerée comme un complexe symbiotique. Bull Soc Sci Nat Fr 6:17–98Google Scholar
  65. Nield T (2007) Supercontinent. Ten billion years in the life of our planet. Harvard University Press, CambridgeGoogle Scholar
  66. Niklas KJ (2016) Plant evolution. An introduction to the history of live. University of Chicago Press, Chicago, ILCrossRefGoogle Scholar
  67. Pigliucci M (2017) Darwinism after the modern synthesis. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 89–104Google Scholar
  68. Reinheimer H (1915) Symbiogenesis: the universal law of progressive evolution. Knapp, Drewett, LondonCrossRefGoogle Scholar
  69. Reinheimer H (1920) Symbiosis: a socio-physiological study of evolution. Headley, LondonGoogle Scholar
  70. Rice AM, Rosen MK (2017) Perspective: ATP controls the crowd. Science 356:701–702CrossRefGoogle Scholar
  71. Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Wilhelm Engelmann, LeipzigGoogle Scholar
  72. Sapp J, Carrapico F, Zolotonosov M (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist Philos Life Sci 24:413–440CrossRefGoogle Scholar
  73. Schimper ATW (1883) Über die Entwicklung der Chlorophyllkörner und der Farbkörper. Botanische Zeitung 41:105–114, 121–131, 137–146, 153–162Google Scholar
  74. Schopf WJ (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885CrossRefGoogle Scholar
  75. Smith CH (2012) Alfred Russel Wallace and the elimination of the unfit. J Biosci 37:203–205CrossRefGoogle Scholar
  76. Snider-Pellegrini A (1858) La Création et ses mystères dévoilés. Franck et Dentu, ParisGoogle Scholar
  77. Speijer D, Lukes J, Elias M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci USA 112:8827–8834CrossRefGoogle Scholar
  78. Wallace AR (1889) Darwinism. An exposition of the theory of natural selection with some of its applications. MacMillan, LondonGoogle Scholar
  79. Wallace AR (1913) Social environment and moral progress. Cassell, LondonCrossRefGoogle Scholar
  80. Wallin IE (1927) Symbionticism and the origin of species. Bailliere, Tindall & Cox, LondonCrossRefGoogle Scholar
  81. Wegener A (1929) Die Entstehung der Kontinente und Ozeane. 4. Auflage. F. Vieweg & Sohn, BraunschweigGoogle Scholar
  82. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefGoogle Scholar
  83. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations