Advertisement

Biomechanics of Three-Dimensional Face

  • Lawrence C. Y. Ho
  • Michael F. Klaassen
  • Kumar Mithraratne
Chapter

Abstract

As stated in the preceding chapters, the human head is a three-dimensional, structurally as well as functionally complex unit that consists of several anatomical structures. These include bones, muscles, fat, ligaments, skin and vessels. It contains delicate expressive areas while the rest of the head is relatively immobile and contributes virtually nothing to the formation of facial expressions and gestures. There exist over 60 muscles in the face; most are bilateral muscles (exist in pairs), for serving different day-to-day functions such as mastication, vision and communication.

Supplementary material

Video 3.1

Video of Fig. 3.9 (MPEG 7427 kb) (MPEG 7427 kb)

Video 3.2

Video of Fig. 3.10 (MPEG 5933 kb) (MPEG 5933 kb)

References

  1. 1.
    Hung APL, Wu T, Hunter P, Mithraratne K (2015) A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. Vis Comput 31(5):527–539CrossRefGoogle Scholar
  2. 2.
    Schuenke M, Schulte E, Schumacher U, Ross L, Lamperti E, Voll M (2010) Head and neuroanatomy. Thieme Medical Publishers, New York, NYGoogle Scholar
  3. 3.
    Aston J, Steinbrech D, Walden J (2009) Aesthetic plastic surgery. Elsevier Health Sciences, AmsterdamGoogle Scholar
  4. 4.
    Hunter PJ (1995) Myocardial constitutive laws for continuum mechanics models of the heart. In: Sideman S, Beyer R (eds) Molecular and subcellular cardiology. Plenum Press, New York, NY, pp 303–318CrossRefGoogle Scholar
  5. 5.
    Abbott BC, Baskin RJ (1962) Volume changes in frog muscle during contraction. J Physiol 161:379–391CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reddy JN (2005) An introduction to the finite element method, 3rd edn. McGraw Hill, New York, NYGoogle Scholar
  7. 7.
    Ackerman MJ (1998) The visible human project. Proc IEEE 86:504–511CrossRefGoogle Scholar
  8. 8.
    Bradley CP, Pullan AJ, Hunter PJ (1997) Geometric modelling of the human torso using cubic hermite elements. Ann Biomed Eng 25:96–111CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandez JW, Tawhai MH, Mithraratne P, Thrupp SF, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2:139–155CrossRefPubMedGoogle Scholar
  10. 10.
    Mithraratne K, Hunter PJ (2006) Customisation of anatomically based musculoskeletal structures. In: Proceedings of the ICMMB-15, Singapore, 6–8 December 2006, pp 467–470Google Scholar
  11. 11.
    Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. ACM Comput Graph 20(4):151–160CrossRefGoogle Scholar
  12. 12.
    Morgan DL, Claflin DR, Julian FJ (1991) Tension as a function of sarcomere length and velocity of shortening in single skeletal muscle fibres of the frog. J Physiol 441:719–732CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Savran A, Alyüz N, Dibekliŏglu H, Çeliktutan O, Gökberk B, Akarun L (2008) Bosphorus database for 3D face analysis. In: The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008). Roskilde University, Denmark, pp 7–9Google Scholar
  14. 14.
    Wu T, Mithraratne K, Sagar M, Hunter PJ (2010) Characterizing facial tissue sliding using ultrasonography. In: Lim CT, Goh JCH (eds) 6th World Congress of Biomechanics, IFMBE Proceedings, vol 31, pp 1566–1569Google Scholar
  15. 15.
    Wu T, Hung AP-L, Hunter PJ, Mithraratne K (2013) Modelling facial expressions: a framework for simulating nonlinear soft tissue deformations using embedded 3D muscles. Finite Elem Anal Design 76:63–70CrossRefGoogle Scholar
  16. 16.
    Wu T, Hung A, Mithraratne K (2014) Generating facial expressions using an anatomically accurate biomechanical Model. IEEE Trans Vis Comput Graph 20(11):1519–1529CrossRefPubMedGoogle Scholar
  17. 17.
    Prendagast PM (2012) Anatomy of the face and neck. In: Shiffman MA, Di Giuseppe A (eds) Cosmetic surgery – art and techniques. Springer, Berlin, pp 29–45Google Scholar
  18. 18.
    Hung A, Mithraratne K, Sagar M (2009) Multilayer soft tissue continuum model: towards realistic simulation of facial expressions. World Acad Sci Eng Tech 54:134–138Google Scholar
  19. 19.
    Mithraratne K, Hung A, Sagar M, Hunter PJ (2010) An efficient heterogeneous continuum model to simulate active contraction of facial soft tissue structures. IFMBE Proc 31:1024–1027CrossRefGoogle Scholar
  20. 20.
    Wu T, Hunter PJ, Mithraratne K (2013) Simulating and validating facial expressions using an anatomically accurate biomechanical model derived from MRI data: towards fast and realistic generation of animated characters, GRAPP 2013. In: Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications, Barcelona, Spain, pp 267–272Google Scholar
  21. 21.
    Chabanas M, Payan Y (2000) A 3D finite element model of the human face for simulation in plastic and maxilla-facial surgery. In: Delp SL, DiGioia AM, Jaramaz B (eds) MICCAI 2000. Springer, Berlin, pp 1068–1075Google Scholar
  22. 22.
    Wu T, Martens H, Hunter P, Mithraratne K (2014) Emulating facial biomechanics using multivariate partial least squares surrogate models. Int J Num Methods Biomed Eng 30(11):1103–1120CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lawrence C. Y. Ho
    • 1
  • Michael F. Klaassen
    • 2
  • Kumar Mithraratne
    • 3
  1. 1.Formerly Repatriation General Hospital ConcordSydneyAustralia
  2. 2.Private PracticeAucklandNew Zealand
  3. 3.The University of AucklandAuckland Bioengineering InstituteAucklandNew Zealand

Personalised recommendations