Advertisement

Fault-Induced Dynamics of Oblivious Robots on a Line

  • Jean-Lou De Carufel
  • Paola Flocchini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

The study of computing in presence of faulty robots in the Look-Compute-Move model has been the object of extensive investigation, typically with the goal of designing algorithms tolerant to as many faults as possible. In this paper, we initiate a new line of investigation on the presence of faults, focusing on a rather different issue. We are interested in understanding the dynamics of a group of robots when they execute an algorithm designed for a fault-free environment, in presence of some undetectable crashed robots. We start this investigation focusing on the classic point-convergence algorithm by Ando et al. [2] for robots with limited visibility, in a simple setting (which already presents serious challenges): the robots operate fully synchronously on a line, and at most two of them are faulty. Interestingly, and perhaps surprisingly, the presence of faults induces the robots to perform some form of scattering, rather than point-convergence. In fact, we discover that they arrange themselves inside the segment delimited by the two faults in interleaved sequences of equidistant robots.

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)CrossRefGoogle Scholar
  3. 3.
    Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). doi: 10.1007/978-3-319-03089-0_13CrossRefGoogle Scholar
  4. 4.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: 14th International Conference on Distributed Computing Systems (ICDCS), pp. 337–346 (2013)Google Scholar
  5. 5.
    Bouzid, Z., Gradinariu, M., Tixeuil, S.: Optimal byzantine-resilient convergence in uni-dimensional robot networks. Theor. Comput. Sci. 411(34–36), 3154–3168 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). doi: 10.1007/978-3-319-25258-2_22CrossRefGoogle Scholar
  7. 7.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithms in asynchronous robots systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoret. Comput. Sci. 399(1–2), 71–82 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Carufel, J.-L., Flocchini, P.: Fault-induced dynamics of oblivious robots in a line. arXiv:1707.03492 (2017)
  11. 11.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). doi: 10.1007/11864219_4. Extended version in arXiv:1602.05546CrossRefGoogle Scholar
  12. 12.
    Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. ACM Trans. Auton. Adapt. Syst. 3(4), 16:1–16:20 (2008)CrossRefGoogle Scholar
  13. 13.
    Dieudonné, Y., Petit, F.: Scatter of robots. Par. Proc. Lett. 19(1), 175–184 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: uniform circle formation. Distrib. Comput. (2017, to appear)Google Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile sensors on a ring. Theoret. Comput. Sci. 402(1), 67–80 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)CrossRefGoogle Scholar
  17. 17.
    Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Izumi, T., Potop-Butucaru, M.G., Tixeuil, S.: Connectivity-preserving scattering of mobile robots with limited visibility. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 319–331. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16023-3_27CrossRefGoogle Scholar
  19. 19.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three dimensional euclidean space. J. ACM 63(3), 16 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada

Personalised recommendations