Advertisement

An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults

  • Lewis Tseng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each pair of nodes is able to communicate with each other directly and reliably. We consider the mobile Byzantine fault model proposed by Garay ’94 – in the model, an omniscient adversary can corrupt up to f nodes in each round, and at the beginning of each round, faults may “move” in the system (i.e., different sets of nodes may become faulty in different rounds). Recent work by Bonomi et al. ’16 proposed a simple iterative approximate consensus algorithm which requires at least \(4f+1\) nodes. This paper proposes a novel technique of using “confession” (a mechanism to allow other nodes to ignore past behavior) and a variant of reliable broadcast to improve the fault-tolerance level. In particular, we present an approximate consensus algorithm that requires only \(\lceil 7f/2\rceil + 1\) nodes, an \(\lfloor f/2 \rfloor \) improvement over the state-of-the-art algorithms. Moreover, we also show that the proposed algorithm is optimal within a family of round-based algorithms.

Keywords

Byzantine mobile faults Iterative algorithms Approximate consensus 

References

  1. 1.
    Abraham, I., Amit, Y., Dolev, D.: Optimal resilience asynchronous approximate agreement. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 229–239. Springer, Heidelberg (2005). doi: 10.1007/11516798_17CrossRefGoogle Scholar
  2. 2.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley Series on Parallel and Distributed Computing (2004)Google Scholar
  3. 3.
    Banu, N., Souissi, S., Izumi, T., Bessani, A.N., Correia, M., Neves, N.F., Buhrman, H., Garay, J.A.: An improved Byzantine agreement algorithm for synchronous systems with mobile faults (2012)Google Scholar
  4. 4.
    Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile Byzantine agreement. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 76–90. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_6CrossRefGoogle Scholar
  5. 5.
    Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement under mobile Byzantine faults. CoRR, abs/1604.03871 (2016)Google Scholar
  6. 6.
    Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement under mobile Byzantine faults. In: 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), pp. 727–728, June 2016Google Scholar
  7. 7.
    Buhrman, H., Garay, J.A., Hoepman, J.H.: Optimal resiliency against mobile faults. In: Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers, pp. 83–88, June 1995Google Scholar
  8. 8.
    Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. J. ACM 33, 499–516 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile faults. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264. Springer, Heidelberg (1994). doi: 10.1007/BFb0020438CrossRefGoogle Scholar
  10. 10.
    Haseltalab, A., Akar, M.: Approximate Byzantine consensus in faulty asynchronous networks. In: 2015 American Control Conference (ACC), July 2015Google Scholar
  11. 11.
    Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information, pp. 482–491. IEEE Computer Society (2003)Google Scholar
  13. 13.
    Kieckhafer, R.M., Azadmanesh, M.H.: Reaching approximate agreement with mixed-mode faults. IEEE Trans. Parallel Distrib. Syst. 5(1), 53–63 (1994)CrossRefGoogle Scholar
  14. 14.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRefGoogle Scholar
  15. 15.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  16. 16.
    Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1991. ACM (1991)Google Scholar
  17. 17.
    Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile Byzantine agreement on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). doi: 10.1007/978-3-319-03850-6_17CrossRefGoogle Scholar
  18. 18.
    Schizas, I., Ribeiro, A., Giannakis, G.: Consensus in ad hoc WSNs with noisy links - Part I: distributed estimation of deterministic signals. IEEE Trans. Sig. Process. 56(1), 350–364 (2008)CrossRefGoogle Scholar
  19. 19.
    Tseng, L., Vaidya, N.: Iterative approximate consensus in the presence of Byzantine link failures. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 84–98. Springer, Cham (2014). doi: 10.1007/978-3-319-09581-3_7CrossRefGoogle Scholar
  20. 20.
    Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate Byzantine consensus in arbitrary directed graphs. In: PODC 2012 (2012)Google Scholar
  21. 21.
    Yung, M.: The mobile adversary paradigm in distributed computation and systems. In: PODC 2015 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer ScienceBoston CollegeBostonUSA

Personalised recommendations