Advertisement

Self-stabilizing Distributed Stable Marriage

  • Marie Laveau
  • George Manoussakis
  • Joffroy Beauquier
  • Thibault Bernard
  • Janna Burman
  • Johanne Cohen
  • Laurence Pilard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

Stable marriage is a problem of matching in a bipartite graph, introduced in an economic context by Gale and Shapley. In this problem, each node has preferences for matching with its neighbors. The final matching should satisfy these preferences such that in no unmatched pair both nodes prefer to be matched together. The problem has a lot of useful applications (two sided markets, migration of virtual machines in Cloud computing, content delivery on the Internet, etc.). There even exist companies dedicated solely to administering stable matching programs. Numerous algorithms have been designed for solving this problem (and its variants), in different contexts, including distributed ones. However, to the best of our knowledge, none of the distributed solutions is self-stabilizing (self-stabilization is a formal framework that allows dealing with transient corruptions of memory and channels). We present a self-stabilizing stable matching solution, in the model of composite atomicity (state-reading model), under an unfair distributed scheduler. The algorithm is given with a formal proof of correctness and an upper bound on its time complexity in terms of moves and steps.

References

  1. 1.
    Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoordinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amira, N., Giladi, R., Lotker, Z.: Distributed weighted stable marriage problem. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 29–40. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13284-1_4CrossRefGoogle Scholar
  3. 3.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-optimal self-stabilizing synchronizer using a phase clock. IEEE Trans. Dependable Secur. Comput. 4(3), 180–190 (2007)CrossRefGoogle Scholar
  4. 4.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC, pp. 150–159 (2004)Google Scholar
  5. 5.
    Brito, I., Meseguer, P.: Distributed stable marriage problem. In: 6th Workshop on Distributed Constraint Reasoning at IJCAI, vol. 5, pp. 135–147 (2005)Google Scholar
  6. 6.
    Chuang, S., Goel, A., McKeown, N., Prabhakar, B.: Matching output queueing with a combined input/output-queued switch. IEEE J. Sel. Areas Commun. 17(6), 1030–1039 (1999)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefGoogle Scholar
  8. 8.
    Floren, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings by truncating the Gale-Shapley algorithm. Algorithmica 58(1), 102–118 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 120(5), 386–391 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghosh, S.: Distributed Systems: An Algorithmic Approach, 2nd edn. Chapman & Hall/CRC, Boca Raton (2014)Google Scholar
  11. 11.
    Golle, P.: A private stable matching algorithm. In: Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006). doi: 10.1007/11889663_5CrossRefGoogle Scholar
  12. 12.
    Gonczarowski, Y.A., Nisan, N., Ostrovsky, R., Rosenbaum, W.: A stable marriage requires communication. In: SODA 2015, pp. 1003–1017 (2015)Google Scholar
  13. 13.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem - Structure and Algorithms. Foundations of Computing Series. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  14. 14.
    Kim, G., Lee, W.: Stable matching with ties for cloud-assisted smart tv services. In: ICCE, pp. 558–559 (2014)Google Scholar
  15. 15.
    Kipnis, A., Patt-Shamir, B.: A note on distributed stable matching. In: ICDCS, pp. 466–473 (2009)Google Scholar
  16. 16.
    Knuth, D.E.: Mariages stables et leurs relations avec d’autres problemes combinatoires. Les Presses de l’Universite de Montreal (1976)Google Scholar
  17. 17.
    Laveau, M., Manoussakis, G., Beauquier, J., Bernard, T., Burman, J., Cohen, J., Pilard, L.: Self-stabilizing distributed stable marriage. Research report (2017)Google Scholar
  18. 18.
    Maggs, B.M., Sitaraman, R.K.: Algorithmic nuggets in content delivery. Comput. Commun. Rev. 45(3), 52–66 (2015)CrossRefGoogle Scholar
  19. 19.
    Manlove, D.F.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific, Singapore (2013)zbMATHGoogle Scholar
  20. 20.
    Ng, C., Hirschberg, D.S.: Lower bounds for the stable marriage problem and its variants. SIAM J. Comput. 19(1), 71–77 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ostrovsky, R., Rosenbaum, W.: Fast distributed almost stable matchings. In: PODC 2015, pp. 101–108. ACM, New York (2015)Google Scholar
  22. 22.
    Khanchandani, P., Wattenhofer, R.: Distributed stable matching with similar preference lists. In: OPODIS. pp. 12:1–12:16 (2016)Google Scholar
  23. 23.
    Roth, A., Vande Vate, J.H.: Random paths to stability in two-sided matching. Econometrica 58(6), 1475–80 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  25. 25.
    Xu, H., Li, B.: Seen as stable marriages. In: INFOCOM, pp. 586–590 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marie Laveau
    • 1
  • George Manoussakis
    • 1
    • 4
  • Joffroy Beauquier
    • 1
  • Thibault Bernard
    • 2
    • 3
  • Janna Burman
    • 1
  • Johanne Cohen
    • 1
    • 4
  • Laurence Pilard
    • 2
  1. 1.LRIUniversité Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.LI-PaRADUniversité de Versailles, Université Paris-SaclayVersaillesFrance
  3. 3.CReSTICUniversité de Reims Champagne ArdenneReimsFrance
  4. 4.LRIUniversité Paris-Sud, CNRS, CentraleSupelec, Université Paris-SaclayOrsayFrance

Personalised recommendations