Advertisement

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots with Lights

  • Subhash Bhagat
  • Krishnendu Mukhopadhyaya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

This paper addresses the constrained version of the mutual visibility problem for a set of asynchronous, opaque robots in the Euclidean plane. The mutual visibility problem asks the robots to form a configuration, within finite time and without collision, in which no three robots are collinear. The constrained mutual visibility problem in addition aims to minimize the maximum number of movements by a single robot. One of the implications of this constrained version of mutual visibility problem is that it also addresses issue of energy efficiency. The robots have a constant amount of persistent memory and they are equipped with externally visible lights which can assume a constant number of predefined colors. The colors represent different states of the robots and are used both for internal memory and communication. The colors of the lights do not change automatically. A distributed algorithm is proposed to solve the constrained mutual visibility problem for a set of asynchronous robots using only seven colors. The proposed algorithm does not impose any other restriction on the capability of the robots and guarantees collision-free movements for the robots.

Keywords

Swarm robotics Asynchronous Mutual visibility Persistent light 

References

  1. 1.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). doi: 10.1007/11864219_4CrossRefGoogle Scholar
  2. 2.
    Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)Google Scholar
  3. 3.
    Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual visibility problem for oblivious robots. In: Proceedings of 26th Canadian Conference on Computational Geometry (CCCG 2014) (2014)Google Scholar
  4. 4.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15, 818–828 (1999)CrossRefGoogle Scholar
  5. 5.
    Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 30–38. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29353-5_4CrossRefGoogle Scholar
  6. 6.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoret. Comput. Sci. 399, 71–82 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theoret. Comput. Sci. 410(6–7), 481–499 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)Google Scholar
  9. 9.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Synchronized dancing of oblivious chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 113–124. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07890-8_10CrossRefGoogle Scholar
  10. 10.
    Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Formation of general position by asynchronous mobile robots under one-axis agreement. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 80–91. Springer, Cham (2016). doi: 10.1007/978-3-319-30139-6_7CrossRefGoogle Scholar
  11. 11.
    Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time complete visibility for robots with lights. In: Proceedings of Parallel and Distributed Processing Symposium (IPDPS), pp. 375–384 (2015)Google Scholar
  12. 12.
    Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log N)-time complete visibility for asynchronous robots with lights. In: Proceedings of Parallel and Distributed Processing Symposium (IPDPS), pp. 513–522 (2017)Google Scholar
  13. 13.
    Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). doi: 10.1007/978-3-319-49259-9_26CrossRefGoogle Scholar
  14. 14.
    Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems. In: Leeuwen, J., Italiano, G.F., Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-69507-3_5CrossRefzbMATHGoogle Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafael (2012)CrossRefGoogle Scholar
  16. 16.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 189–200. Springer, Cham (2013). doi: 10.1007/978-3-319-03578-9_16CrossRefGoogle Scholar
  17. 17.
    Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new directions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). doi: 10.1007/11603771_1CrossRefGoogle Scholar
  18. 18.
    Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal number of colors. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015). doi: 10.1007/978-3-319-28472-9_15CrossRefGoogle Scholar
  19. 19.
    Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algorithms. In: Proceedings of 27th Canadian Conference on Computational Geometry (CCCG 2015) (2015)Google Scholar
  20. 20.
    Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. J. Discrete Algorithms 36, 50–62 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-45346-5_21CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Advanced Computing and Microelectronics Unit, Indian Statistical InstituteKolkataIndia

Personalised recommendations