Skip to main content

Universally Optimal Gathering Under Limited Visibility

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10616))

Abstract

We consider the distributed setting of N autonomous mobile robots that operate in Look-Compute-Move (LCM) cycles following the well-celebrated classic oblivious robots model. We study the fundamental problem of gathering N autonomous robots on a plane, which requires all robots to meet at a single point (or to position within a small area) that is not known beforehand. We consider limited visibility under which robots are only able to see other robots up to a constant Euclidean distance and focus on the time complexity of gathering by robots under limited visibility. There exists an \(\mathcal{O}(D_G)\) time algorithm for this problem in the fully synchronous setting, assuming that the robots agree on one coordinate axis (say North), where \(D_G\) is the diameter of the visibility graph of the initial configuration. In this paper, we provide the first \(\mathcal{O}(D_E)\) time algorithm for this problem in the asynchronous setting under the same assumption of robots agreement on one coordinate axis, where \(D_E\) is the Euclidean distance between farthest-pair of robots in the initial configuration. The runtime of our algorithm is a significant improvement since, for any initial configuration of \(N\ge 1\) robots, \(D_E\le D_G\), and, there exist initial configurations for which \(D_G\) can be as much as quadratic on \(D_E\), i.e., \(D_G=\varTheta (D_E^2)\). Moreover, our algorithm is universally (time) optimal since the trivial time lower bound for this problem is \(\varOmega (D_E)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    If we do not explicitly write “square”, then the viewing and connectivity ranges are circular.

  2. 2.

    For some cases, e.g., for grid, the viewing range smaller than \(\sqrt{10}\) is sufficient. We describe what exactly is the viewing range when we describe algorithms in Sects. 3 and 5.

References

  1. Agathangelou, C. Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

    Google Scholar 

  2. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: ISIC, pp. 453–460 (1995)

    Google Scholar 

  3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0_90

    Chapter  Google Scholar 

  4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  6. Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18381-2_15

    Chapter  Google Scholar 

  7. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_52

    Chapter  Google Scholar 

  8. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)

    Google Scholar 

  9. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31104-8_28

    Chapter  Google Scholar 

  10. Degener, B., Kempkes, B., Langner, T. , Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: SPAA, pp. 139–148 (2011)

    Google Scholar 

  11. Degener, B. Kempkes, B., Meyer auf der Heide, F.: A local o(n\(^{2}\)) gathering algorithm. In: SPAA, pp. 217–223 (2010)

    Google Scholar 

  12. Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 211–225. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5_15

    Chapter  Google Scholar 

  13. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious robots on a grid. CoRR, abs/1702.03400 (2017)

    Chapter  Google Scholar 

  15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

    Article  Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  Google Scholar 

  17. Izumi, T., Kawabata, Y., Kitamura, N.: Toward time-optimal gathering for limited visibility model (2015). https://sites.google.com/site/micromacfrance/abstract-tasuke

  18. Kempkes, B., Kling, P., Meyer auf der Heide, F. Optimal and competitive runtime bounds for continuous, local gathering of mobile robots. In: SPAA, pp. 18–26 (2012)

    Google Scholar 

  19. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014). doi:10.1007/978-3-319-14472-6_17

    Chapter  Google Scholar 

  20. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  Google Scholar 

  21. Prencipe, G.: Autonomous mobile robots: a distributed computing perspective. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 6–21. Springer, Heidelberg (2014). doi:10.1007/978-3-642-45346-5_2

    Chapter  Google Scholar 

  22. Sharma, G., Busch, C., Mukhopadhyay, S., Malveaux, C.: Tight analysis of a collisionless robot gathering algorithm. ACM Trans. Auton. Adapt. Syst. 12(1), 3:1–3:20 (2017)

    Article  Google Scholar 

  23. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006). doi:10.1007/11945529_24

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Costas Busch for introducing us this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokarna Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Poudel, P., Sharma, G. (2017). Universally Optimal Gathering Under Limited Visibility. In: Spirakis, P., Tsigas, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2017. Lecture Notes in Computer Science(), vol 10616. Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69084-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69083-4

  • Online ISBN: 978-3-319-69084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics