Brief Announcement: Reduced Space Self-stabilizing Center Finding Algorithms in Chains and Trees

  • Yuichi SudoEmail author
  • Ajoy K. Datta
  • Lawrence L. Larmore
  • Toshimitsu Masuzawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)


In this work, we consider the problem of finding the center, or centers, of a chain network and a tree network.


  1. 1.
    Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm to find the center of a tree graph. Parallel Algorithms Appl. 10(3–4), 237–248 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In: 2003 Proceedings of 23rd International Conference on Distributed Computing Systems, pp. 20–26. IEEE (2003)Google Scholar
  3. 3.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilizing PIF in tree networks. Distrib. Comput. 20, 3–19 (2007)zbMATHGoogle Scholar
  4. 4.
    Datta, A.K., Larmore, L.L., Masuzawa, T.: Constant space self-stabilizing center finding in anonymous tree networks. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking ICDCN 2015, pp. 38:1–38:10 (2015)Google Scholar
  5. 5.
    Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Commun. Assoc. Comput. Mach. 17, 643–644 (1974)zbMATHGoogle Scholar
  6. 6.
    Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Inf. Control 12(3), 212–220 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuichi Sudo
    • 1
    Email author
  • Ajoy K. Datta
    • 2
  • Lawrence L. Larmore
    • 2
  • Toshimitsu Masuzawa
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan
  2. 2.University of NevadaLas VegasUSA

Personalised recommendations