Advertisement

A Self-stabilizing General De Bruijn Graph

  • Michael Feldmann
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

Searching for other participants is one of the most important operations in a distributed system. We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination. Given a constant d, this paper introduces a new self-stabilizing protocol for the q-ary d-dimensional de Bruijn graph (\(q = \root d \of {n}\)) that is able to route any search request in at most d hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of \(\mathcal O(\root d \of {n})\), which is asymptotically optimal for a fixed diameter d. The protocol keeps the expected amount of edge redirections per node in \(\mathcal O(\root d \of {n})\), when the number of nodes in the system increases by factor \(2^d\). The number of messages that are periodically sent out by nodes is constant.

Keywords

Distributed systems Topological self-stabilization De bruijn graph 

Notes

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

References

  1. 1.
    Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay networks. Comput. Commun. Rev. 32(1), 66 (2002). doi: 10.1145/510726.510740CrossRefGoogle Scholar
  2. 2.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013). doi: 10.1016/j.tcs.2013.02.021MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandsche Akademie Van Wetenschappen 49(6), 758–764 (1946)MATHGoogle Scholar
  4. 4.
    Brutlag, J.: Speed matters for Google web search. Technical report, Google, Inc. (2009)Google Scholar
  5. 5.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012). doi: 10.1016/j.tcs.2011.12.079MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974). doi: 10.1145/361179.361202CrossRefMATHGoogle Scholar
  7. 7.
    Feldmann, M., Scheideler, C.: A self-stabilizing general de bruijn graph (2017). https://arxiv.org/abs/1708.06542Google Scholar
  8. 8.
    Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays. In: Jones, M.B. (ed.) Proceedings of HotOS 2003: 9th Workshop on Hot Topics in Operating Systems, Lihue (Kauai), Hawaii, USA, 18–21 May 2003, pp. 7–12. USENIX (2003). https://www.usenix.org/conference/hotos-ix/one-hop-lookups-peer-peer-overlays
  9. 9.
    Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In: Morris, R., Savage, S. (eds.) Proceedings of 1st Symposium on Networked Systems Design and Implementation (NSDI 2004), San Francisco, California, USA, 29–31 March 2004, pp. 113–126. USENIX (2004). http://www.usenix.org/events/nsdi04/tech/gupta.html
  10. 10.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. Theory Comput. Syst. 55(3), 591–612 (2014). doi: 10.1007/s00224-012-9431-2MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: A deterministic worst-case message complexity optimal solution for resource discovery. Theor. Comput. Sci. 584, 67–79 (2015). doi: 10.1016/j.tcs.2014.11.027MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koutsopoulos, A., Scheideler, C., Strothmann, T.: Towards a universal approach for the finite departure problem in overlay networks. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 201–216. Springer, Cham (2015). doi: 10.1007/978-3-319-21741-3_14CrossRefGoogle Scholar
  13. 13.
    Malyshev, F.M., Tarakanov, V.E.: Generalized de bruijn graphs. Math. Notes 62(4), 449–456 (1997). doi: 10.1007/BF02358978MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). doi: 10.1145/1273340.1273350MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting in graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007. SIAM (2007). http://dx.doi.org/10.1137/1.9781611972870.10CrossRefGoogle Scholar
  17. 17.
    Richa, A.W., Scheideler, C., Stevens, P.: Self-stabilizing de bruijn networks. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24550-3_31CrossRefGoogle Scholar
  18. 18.
    Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Caronni, G., Weiler, N., Waldvogel, M., Shahmehri, N. (eds.) Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany, 31 August–2 September 2005, pp. 39–46. IEEE Computer Society (2005). http://dx.doi.org/10.1109/P2P.2005.34

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations