Advertisement

A Case for the Evolution from Commensalism to Pathogenicity and Possibly Back Again: Lessons Learned from the Human-Adapted Neisseria Species

  • Lauren L. Priniski
  • H. Steven Seifert
Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens and the etiologic agents for the sexually transmitted infection gonorrhea and bacterial meningitis, respectively. Several closely related, human-restricted, commensal Neisseria spp. share an anatomical niche with N. meningitidis. These commensal Neisseria spp. rarely cause pathology since they are not seen as foreign and do not trigger the innate immune system. In this chapter, we discuss how the pathogenic Neisseria spp. may have evolved from a single commensal progenitor by gaining the ability to elicit inflammation. This ancestor then evolved into the present-day pathogens through the acquisition of several additional factors and mechanisms of interacting with host cells, tissues, and molecules and the possibility that the pathogenic ancestor may have also given rise to several commensal species. To help elucidate these evolutionary steps, we will define core colonization determinants shared between the commensal and pathogenic organisms and then, in contrast, define determinants and properties shared by or unique to each pathogenic species. Of note, the pathogenic Neisseria spp. possess a complex set of diversity generation systems, indicating an advantage of such systems in the pathogenic Neisseria spp. lifestyle, and we will focus on the pilin antigenic variation system, which provides some of the best clues about the evolutionary relationship between the species. These analyses will lead to our model for how some organisms that damage their host (e.g., organisms we call pathogens) can arise from organisms that do not damage their host and could also evolve to lose pathogenicity.

References

  1. Aas FE, Vik A, Vedde J, Koomey M, Egge-Jacobsen W (2007) Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol Microbiol 65(3):607–624PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435(7039):228–232.  https://doi.org/10.1038/nature03524 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aho EL, Keating AM, McGillivray SM (2000) A comparative analysis of pilin genes from pathogenic and nonpathogenic Neisseria species. Microb Pathog 28(2):81–88.  https://doi.org/10.1006/mpat.1999.0325 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alcala B, Salcedo C, Arreaza L, Abad R, Enriquez R, De La Fuente L, Uria MJ, Vazquez JA (2004) Antigenic and/or phase variation of PorA protein in non-subtypable Neisseria meningitidis strains isolated in Spain. J Med Microbiol 53(Pt 6):515–518PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808.  https://doi.org/10.1128/MMBR.00023-09 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Angert ER, Clements KD (2004) Initiation of intracellular offspring in Epulopiscium. Mol Microbiol 51(3):827–835PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anonsen JH, Vik A, Borud B, Viburiene R, Aas FE, Kidd SW, Aspholm M, Koomey M (2015) Characterization of a unique tetrasaccharide and distinct glycoproteome in the O-linked protein glycosylation system of Neisseria elongata subsp. glycolytica. J Bacteriol 198(2):256–267.  https://doi.org/10.1128/JB.00620-15 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aoki SK, Malinverni JC, Jacoby K, Thomas B, Pamma R, Trinh BN, Remers S, Webb J, Braaten BA, Silhavy TJ, Low DA (2008) Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol Microbiol 70(2):323–340.  https://doi.org/10.1111/j.1365-2958.2008.06404.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aoki SK, Diner EJ, de Roodenbeke CT, Burgess BR, Poole SJ, Braaten BA, Jones AM, Webb JS, Hayes CS, Cotter PA, Low DA (2010) A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468(7322):439–442.  https://doi.org/10.1038/nature09490 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arenas J, Schipper K, van Ulsen P, van der Ende A, Tommassen J (2013) Domain exchange at the 3′ end of the gene encoding the fratricide meningococcal two-partner secretion protein A. BMC Genomics 14:622.  https://doi.org/10.1186/1471-2164-14-622 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Atack JM, Ibranovic I, Ong CL, Djoko KY, Chen NH, Vanden Hoven R, Jennings MP, Edwards JL, McEwan AG (2014) A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells. J Infect Dis 210(8):1311–1318.  https://doi.org/10.1093/infdis/jiu230 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Arenas J, de Maat V, Caton L, Krekorian M, Herrero JC, Ferrara F, Tommassen J (2015) Fratricide activity of MafB protein of N. meningitidis strain B16B6. BMC Microbiol 15:156.  https://doi.org/10.1186/s12866-015-0493-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ayala P, Lin L, Hopper S, Fukuda M, So M (1998) Infection of epithelial cells by pathogenic Neisseriae reduces the levels of multiple lysosomal constituents. Infect Immun 66(10):5001–5007PubMedPubMedCentralGoogle Scholar
  14. Bartley S, Kahler CM (2014) The glycome of Neisseria spp.: how does this relate to pathogenesis? In: Davies JK, Kahler CM (eds) Pathogenic Neisseria: genomics, molecular biology and disease intervention. Caister Academic Press, Norfolk, pp 115–145Google Scholar
  15. Bartley SN, Tzeng YL, Heel K, Lee CW, Mowlaboccus S, Seemann T, Lu W, Lin YH, Ryan CS, Peacock C, Stephens DS, Davies JK, Kahler CM (2013) Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS One 8(2):e55798.  https://doi.org/10.1371/journal.pone.0055798 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bayliss CD, Hoe JC, Makepeace K, Martin P, Hood DW, Moxon ER (2008) Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect Immun 76(11):5038–5048.  https://doi.org/10.1128/IAI.00395-08 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bazan JA, Peterson AS, Kirkcaldy RD, Briere EC, Maierhofer C, Turner AN, Licon DB, Parker N, Dennison A, Ervin M, Johnson L, Weberman B, Hackert P, Wang X, Kretz CB, Abrams AJ, Trees DL, Del Rio C, Stephens DS, Tzeng YL, DiOrio M, Roberts MW (2016) Notes from the field: increase in Neisseria meningitidis-associated urethritis among men at two sentinel clinics – Columbus, Ohio, and Oakland County, Michigan, 2015. MMWR Morb Mortal Wkly Rep 65(21):550–552.  https://doi.org/10.15585/mmwr.mm6521a5 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bennet J, Bratcher HB, Brehony C, Harrison OB, Maiden CJ (2014) The genus Neisseria. In: Rosenberg E (ed) The prokaryotes–alphaproteobacteria and betaproteobacteria. Springer, Berlin.  https://doi.org/10.1007/978-3-642-30197-1_241 CrossRefGoogle Scholar
  19. Bennett JS, Griffiths DT, McCarthy ND, Sleeman KL, Jolley KA, Crook DW, Maiden MC (2005) Genetic diversity and carriage dynamics of Neisseria lactamica in infants. Infect Immun 73(4):2424–2432.  https://doi.org/10.1128/IAI.73.4.2424-2432.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, White B, Parkhill J, Maiden MC (2010) Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics 11:652.  https://doi.org/10.1186/1471-2164-11-652 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J, Maiden MC (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158(Pt 6):1570–1580.  https://doi.org/10.1099/mic.0.056077-0 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bhat KS, Gibbs CP, Barrera O, Morrison SG, Jahnig F, Stern A, Kupsch EM, Meyer TF, Swanson J (1991) The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 5(8):1889–1901PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MC, Dervin C, Nassif X, Tinsley CR (2005) A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201(12):1905–1913PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bille E, Ure R, Gray SJ, Kaczmarski EB, McCarthy ND, Nassif X, Maiden MC, Tinsley CR (2008) Association of a bacteriophage with meningococcal disease in young adults. PLoS One 3(12):e3885.  https://doi.org/10.1371/journal.pone.0003885 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bille E, Meyer J, Jamet A, Euphrasie D, Barnier JP, Brissac T, Larsen A, Pelissier P, Nassif X (2017) A virulenceassociated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation. PLoS Pathog 13(7):e1006495.  https://doi.org/10.1371/journal.ppat.1006495 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Borrow R, Alarcon P, Carlos J, Caugant DA, Christensen H, Debbag R, De Wals P, Echaniz-Aviles G, Findlow J, Head C, Holt D, Kamiya H, Saha SK, Sidorenko S, Taha MK, Trotter C, Vazquez Moreno JA, von Gottberg A, Safadi MA, Global Meningococcal I (2017) The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Rev Vaccines 16(4):313–328.  https://doi.org/10.1080/14760584.2017.1258308 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Borud B, Aas FE, Vik A, Winther-Larsen HC, Egge-Jacobsen W, Koomey M (2010) Genetic, structural, and antigenic analyses of glycan diversity in the O-linked protein glycosylation systems of human Neisseria species. J Bacteriol 192(11):2816–2829.  https://doi.org/10.1128/JB.00101-10 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Borud B, Viburiene R, Hartley MD, Paulsen BS, Egge-Jacobsen W, Imperiali B, Koomey M (2011) Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc Natl Acad Sci U S A 108(23):9643–9648.  https://doi.org/10.1073/pnas.1103321108 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bos MP, Grunert F, Belland RJ (1997) Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect Immun 65(6):2353–2361PubMedPubMedCentralGoogle Scholar
  30. Bresler V, Montgomery WL, Fishelson L, Pollak PE (1998) Gigantism in a bacterium, Epulopiscium fishelsoni, correlates with complex patterns in arrangement, quantity, and segregation of DNA. J Bacteriol 180(21):5601–5611PubMedPubMedCentralGoogle Scholar
  31. Britigan BE, Klapper D, Svendsen T, Cohen MS (1988) Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. An unrecognized aspect of the oxygen metabolism of phagocytosis. J Clin Investig 81:318–324PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brunham RC, Plummer F, Slaney L, Rand F, DeWitt W (1985) Correlation of auxotype and protein I type with expression of disease due to Neisseria gonorrhoeae. J Infect Dis 152:339–343PubMedCrossRefPubMedCentralGoogle Scholar
  33. Burch CL, Danaher RJ, Stein DC (1997) Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J Bacteriol 179(3):982–986PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542(7640):237–241.  https://doi.org/10.1038/nature21059 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325(5941):764–767.  https://doi.org/10.1126/science.1175653 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cahoon LA, Seifert HS (2011) Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol Microbiol 81(5):1136–1143.  https://doi.org/10.1111/j.1365-2958.2011.07773.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cahoon LA, Seifert HS (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathog 9(1):e1003074.  https://doi.org/10.1371/journal.ppat.1003074 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cannon JG, Buchanan TM, Sparling PF (1983) Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun 40:816–819PubMedPubMedCentralGoogle Scholar
  39. Capecchi B, Adu-Bobie J, Di Marcello F, Ciucchi L, Masignani V, Taddei A, Rappuoli R, Pizza M, Arico B (2005) Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol 55(3):687–698.  https://doi.org/10.1111/j.1365-2958.2004.04423.x CrossRefPubMedPubMedCentralGoogle Scholar
  40. Cartwright KA, Stuart JM, Jones DM, Noah ND (1987) The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 99(3):591–601PubMedPubMedCentralCrossRefGoogle Scholar
  41. Casadevall A, Pirofski LA (2014) Microbiology: ditch the term pathogen. Nature 516(7530):165–166.  https://doi.org/10.1038/516165a CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chen T, Gotschlich EC (1996) CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc Natl Acad Sci U S A 93(25):14851–14856PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chen T, Grunert F, Medina-Marino A, Gotschlich EC (1997) Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J Exp Med 185(9):1557–1564PubMedPubMedCentralCrossRefGoogle Scholar
  44. Childers NK, Bruce MG, McGhee JR (1989) Molecular mechanisms of immunoglobulin A defense. Annu Rev Microbiol 43:503–536.  https://doi.org/10.1146/annurev.mi.43.100189.002443 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cloud KA, Dillard JP (2002) A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect Immun 70(6):2752–2757PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cloud-Hansen KA, Hackett KT, Garcia DL, Dillard JP (2008) Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers. J Bacteriol 190(17):5989–5994.  https://doi.org/10.1128/JB.00506-08 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Comanducci M, Bambini S, Caugant DA, Mora M, Brunelli B, Capecchi B, Ciucchi L, Rappuoli R, Pizza M (2004) NadA diversity and carriage in Neisseria meningitidis. Infect Immun 72(7):4217–4223.  https://doi.org/10.1128/IAI.72.7.4217-4223.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Cookson BT, Tyler AN, Goldman WE (1989) Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry 28(4):1744–1749PubMedCrossRefPubMedCentralGoogle Scholar
  49. Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC (2003) Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 185(11):3270–3277PubMedPubMedCentralCrossRefGoogle Scholar
  50. Criss AK, Seifert HS (2012) A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 10(3):178–190.  https://doi.org/10.1038/nrmicro2713 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Criss AK, Kline KA, Seifert HS (2005) The frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 58(2):510–519.  https://doi.org/10.1111/j.1365-2958.2005.04838.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Crum-Cianflone N, Sullivan E (2016) Meningococcal vaccinations. Infect Dis Ther 5(2):89–112.  https://doi.org/10.1007/s40121-016-0107-0 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Danaher RJ, Levin JC, Arking D, Burch CL, Sandlin R, Stein DC (1995) Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J Bacteriol 177(24):7275–7279PubMedPubMedCentralCrossRefGoogle Scholar
  54. Davies JK, Harrison PF, Lin YH, Bartley S, Khoo CA, Seemann T, Ryan CS, Kahler CM, Hill SA (2014) The use of high-throughput DNA sequencing in the investigation of antigenic variation: application to Neisseria species. PLoS One 9(1):e86704.  https://doi.org/10.1371/journal.pone.0086704 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Davis J, Smith AL, Hughes WR, Golomb M (2001) Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J Bacteriol 183(15):4626–4635.  https://doi.org/10.1128/JB.183.15.000-000.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  56. de Vries FP, Cole R, Dankert J, Frosch M, van Putten JP (1998) Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol Microbiol 27(6):1203–1212PubMedCrossRefPubMedCentralGoogle Scholar
  57. Deasy AM, Guccione E, Dale AP, Andrews N, Evans CM, Bennett JS, Bratcher HB, Maiden MC, Gorringe AR, Read RC (2015) Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: a controlled human infection study. Clin Infect Dis 60(10):1512–1520.  https://doi.org/10.1093/cid/civ098 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Del Tordello E, Vacca I, Ram S, Rappuoli R, Serruto D (2014) Neisseria meningitidis NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proc Natl Acad Sci U S A 111(1):427–432.  https://doi.org/10.1073/pnas.1321556111 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Derrick JP, Urwin R, Suker J, Feavers IM, Maiden MC (1999) Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun 67(5):2406–2413PubMedPubMedCentralGoogle Scholar
  60. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ (2016) Within-host evolution of bacterial pathogens. Nat Rev Microbiol 14(3):150–162.  https://doi.org/10.1038/nrmicro.2015.13 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Dillard JP, Seifert HS (2001) A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41(1):263–277PubMedCrossRefPubMedCentralGoogle Scholar
  62. Donati C, Zolfo M, Albanese D, Tin Truong D, Asnicar F, Iebba V, Cavalieri D, Jousson O, De Filippo C, Huttenhower C, Segata N (2016) Uncovering oral Neisseria tropism and persistence using metagenomic sequencing. Nat Microbiol 1(7):16070.  https://doi.org/10.1038/nmicrobiol.2016.70 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Dossett JH, Appelbaum PC, Knapp JS, Totten PA (1985) Proctitis associated with Neisseria cinerea misidentified as Neisseria gonorrhoeae in a child. J Clin Microbiol 21(4):575–577PubMedPubMedCentralGoogle Scholar
  64. Edwards JL, Apicella MA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17 (4):965–981, Table of contents.  https://doi.org/10.1128/CMR.17.4.965-981.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Edwards JL, Butler EK (2011) The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front Microbiol 2:102.  https://doi.org/10.3389/fmicb.2011.00102 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Elkins C, Thomas CE, Seifert HS, Sparling PF (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173(12):3911–3913PubMedPubMedCentralCrossRefGoogle Scholar
  67. Evans NJ, Harrison OB, Clow K, Derrick JP, Feavers IM, Maiden MC (2010) Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. Microbiology 156(Pt 5):1384–1393.  https://doi.org/10.1099/mic.0.036475-0 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Fairley CK, Hocking JS, Zhang L, Chow EP (2017) Frequent transmission of gonorrhea in men who have sex with men. Emerg Infect Dis 23(1):102–104.  https://doi.org/10.3201/eid2301.161205 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Feavers IM, Maiden MC (1998) A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol Microbiol 30(3):647–656PubMedCrossRefPubMedCentralGoogle Scholar
  70. Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61(2):136–169PubMedPubMedCentralGoogle Scholar
  71. Frasch CE, Zollinger WD, Poolman JT (1985) Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 7(4):504–510PubMedCrossRefPubMedCentralGoogle Scholar
  72. Frasch CE, Preziosi MP, LaForce FM (2012) Development of a group A meningococcal conjugate vaccine, MenAfriVac(TM). Hum Vaccin Immunother 8(6):715–724.  https://doi.org/10.4161/hv.19619 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Garcia DL, Dillard JP (2008) Mutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae. J Bacteriol 190(11):3799–3807.  https://doi.org/10.1128/JB.01194-07 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Pehau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Dumenil G (2015) Neisseria meningitidis type IV pili composed of sequence invariable pilins are masked by multisite glycosylation. PLoS Pathog 11(9):e1005162.  https://doi.org/10.1371/journal.ppat.1005162 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587.  https://doi.org/10.1126/science.1084677 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129(6):1307–1326PubMedPubMedCentralCrossRefGoogle Scholar
  77. Goodman SD, Scocca JJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 85(18):6982–6986PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gotschlich EC (1994) Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J Exp Med 180(6):2181–2190PubMedCrossRefPubMedCentralGoogle Scholar
  79. Gray-Owen SD, Lorenzen DR, Haude A, Meyer TF, Dehio C (1997) Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol Microbiol 26(5):971–980PubMedCrossRefPubMedCentralGoogle Scholar
  80. Grissa I, Bouchon P, Pourcel C, Vergnaud G (2008) On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie 90(4):660–668.  https://doi.org/10.1016/j.biochi.2007.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Haas R, Meyer TF (1986) The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679.  https://doi.org/10.1146/annurev.micro.54.1.641 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Hagblom P, Segal E, Billyard E, So M (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315(6015):156–158PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hagen TA, Cornelissen CN (2006) Neisseria gonorrhoeae requires expression of TonB and the putative transporter TdfF to replicate within cervical epithelial cells. Mol Microbiol 62(4):1144–1157.  https://doi.org/10.1111/j.1365-2958.2006.05429.x CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hagman M, Forslin L, Moi H, Danielsson D (1991) Neisseria meningitidis in specimens from urogenital sites. Is increased awareness necessary? Sex Transm Dis 18(4):228–232PubMedCrossRefPubMedCentralGoogle Scholar
  86. Haines KA, Yeh L, Blake MS, Cristello P, Korchak H, Weissmann G (1988) Protein I, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2-generation. J Biol Chem 263(2):945–951PubMedPubMedCentralGoogle Scholar
  87. Hamilton HL, Dominguez NM, Schwartz KJ, Hackett KT, Dillard JP (2005) Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 55(6):1704–1721.  https://doi.org/10.1111/j.1365-2958.2005.04521.x CrossRefPubMedPubMedCentralGoogle Scholar
  88. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81.  https://doi.org/10.1006/scbi.1998.0119 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hammerschmidt S, Muller A, Sillmann H, Muhlenhoff M, Borrow R, Fox A, van Putten J, Zollinger WD, Gerardy-Schahn R, Frosch M (1996) Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol 20(6):1211–1220PubMedCrossRefPubMedCentralGoogle Scholar
  90. Hamrick TS, Dempsey JA, Cohen MS, Cannon JG (2001) Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 147(Pt 4):839–849PubMedCrossRefPubMedCentralGoogle Scholar
  91. Hansen MT (1978) Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134(1):71–75PubMedPubMedCentralGoogle Scholar
  92. Harrison OB, Evans NJ, Blair JM, Grimes HS, Tinsley CR, Nassif X, Kriz P, Ure R, Gray SJ, Derrick JP, Maiden MC, Feavers IM (2009) Epidemiological evidence for the role of the hemoglobin receptor, hmbR, in meningococcal virulence. J Infect Dis 200(1):94–98.  https://doi.org/10.1086/599377 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Harrison OB, Bennett JS, Derrick JP, Maiden MC, Bayliss CD (2013a) Distribution and diversity of the haemoglobin-haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria. Microbiology 159(Pt 9):1920–1930.  https://doi.org/10.1099/mic.0.068874-0 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB, Jolley KA, Corton C, Care R, Poolman JT, Zollinger WD, Frasch CE, Stephens DS, Feavers I, Frosch M, Parkhill J, Vogel U, Quail MA, Bentley SD, Maiden MC (2013b) Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis 19(4):566–573.  https://doi.org/10.3201/eid1904.111799 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Helm RA, Seifert HS (2010) Frequency and rate of pilin antigenic variation of Neisseria meningitidis. J Bacteriol 192(14):3822–3823.  https://doi.org/10.1128/JB.00280-10 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Howell-Adams B, Seifert HS (2000) Molecular models accounting for the gene conversion reactions mediating gonococcal pilin antigenic variation. Mol Microbiol 37(5):1146–1158PubMedCrossRefGoogle Scholar
  97. Jamet A, Nassif X (2015) New players in the toxin field: polymorphic toxin systems in bacteria. MBio 6(3):e00285–e00215.  https://doi.org/10.1128/mBio.00285-15 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Jamet A, Jousset AB, Euphrasie D, Mukorako P, Boucharlat A, Ducousso A, Charbit A, Nassif X (2015) A new family of secreted toxins in pathogenic Neisseria species. PLoS Pathog 11(1):e1004592.  https://doi.org/10.1371/journal.ppat.1004592 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575PubMedCrossRefGoogle Scholar
  100. Jarva H, Ram S, Vogel U, Blom AM, Meri S (2005) Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. J Immunol 174(10):6299–6307PubMedCrossRefGoogle Scholar
  101. Jennings MP, Srikhanta YN, Moxon ER, Kramer M, Poolman JT, Kuipers B, van der Ley P (1999) The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145(Pt 11):3013–3021.  https://doi.org/10.1099/00221287-145-11-3013 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Jennings MP, Jen FE, Roddam LF, Apicella MA, Edwards JL (2011) Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol 13(6):885–896.  https://doi.org/10.1111/j.1462-5822.2011.01586.x CrossRefPubMedPubMedCentralGoogle Scholar
  103. Johannsen DB, Johnston DM, Koymen HO, Cohen MS, Cannon JG (1999) A Neisseria gonorrhoeae immunoglobulin A1 protease mutant is infectious in the human challenge model of urethral infection. Infect Immun 67(6):3009–3013PubMedPubMedCentralGoogle Scholar
  104. John CM, Liu M, Phillips NJ, Yang Z, Funk CR, Zimmerman LI, Griffiss JM, Stein DC, Jarvis GA (2012) Lack of lipid A pyrophosphorylation and functional lptA reduces inflammation by Neisseria commensals. Infect Immun 80(11):4014–4026.  https://doi.org/10.1128/IAI.00506-12 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Johswich KO, McCaw SE, Islam E, Sintsova A, Gu A, Shively JE, Gray-Owen SD (2013) In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog 9(7):e1003509.  https://doi.org/10.1371/journal.ppat.1003509 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Jonsson AB, Nyberg G, Normark S (1991) Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10(2):477–488PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jordan PW, Snyder LA, Saunders NJ (2005) Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol 5:21.  https://doi.org/10.1186/1471-2180-5-21 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Judson FN (1990) Gonorrhea. Med Clin North Am 74(6):1353–1366PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kahler CM, Blum E, Miller YK, Ryan D, Popovic T, Stephens DS (2001) exl, an exchangeable genetic island in Neisseria meningitidis. Infect Immun 69(3):1687–1696.  https://doi.org/10.1128/IAI.69.3.1687-1696.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kent CK, Chaw JK, Wong W, Liska S, Gibson S, Hubbard G, Klausner JD (2005) Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003. Clin Infect Dis 41(1):67–74.  https://doi.org/10.1086/430704 CrossRefPubMedPubMedCentralGoogle Scholar
  111. King GJ, Swanson J (1978) Studies on gonococcus infection. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association. Infect Immun 21:575–584PubMedPubMedCentralGoogle Scholar
  112. Kinghorn G (2010) Pharyngeal gonorrhoea: a silent cause for concern. Sex Transm Infect 86(6):413–414.  https://doi.org/10.1136/sti.2010.043349 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kitten T, Barbour AG (1992) The relapsing fever agent Borrelia hermsii has multiple copies of its chromosome and linear plasmids. Genetics 132(2):311–324PubMedPubMedCentralGoogle Scholar
  114. Kline KA, Seifert HS (2005) Role of the Rep helicase gene in homologous recombination in Neisseria gonorrhoeae. J Bacteriol 187(8):2903–2907PubMedPubMedCentralCrossRefGoogle Scholar
  115. Klughammer J, Dittrich M, Blom J, Mitesser V, Vogel U, Frosch M, Goesmann A, Muller T, Schoen C (2017) Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease. PLoS One 12(1):e0169892.  https://doi.org/10.1371/journal.pone.0169892 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Knapp JS (1988) Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev 1(4):415–431PubMedPubMedCentralCrossRefGoogle Scholar
  117. Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48(6):717–722PubMedCrossRefPubMedCentralGoogle Scholar
  118. Koomey M, Gotschlich EC, Robbins K, Bergstrom S, Swanson J (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117(3):391–398PubMedPubMedCentralGoogle Scholar
  119. Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ (2012) RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5′ end-stacked dimeric parallel G-quadruplexes. Structure 20(12):2090–2102.  https://doi.org/10.1016/j.str.2012.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Lee MH, Walker GC (1996) Interactions of Escherichia coli UmuD with activated RecA analyzed by cross-linking UmuD monocysteine derivatives. J Bacteriol 178(24):7285–7294PubMedPubMedCentralCrossRefGoogle Scholar
  121. Leighton MP, Kelly DJ, Williamson MP, Shaw JG (2001) An NMR and enzyme study of the carbon metabolism of Neisseria meningitidis. Microbiology 147(Pt 6):1473–1482.  https://doi.org/10.1099/00221287-147-6-1473 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Leo JC, Grin I, Linke D (2012) Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond Ser B Biol Sci 367(1592):1088–1101.  https://doi.org/10.1098/rstb.2011.0208 CrossRefGoogle Scholar
  123. Lewis LA, Ram S (2014) Meningococcal disease and the complement system. Virulence 5(1):98–126.  https://doi.org/10.4161/viru.26515 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Liguori A, Malito E, Lo Surdo P, Fagnocchi L, Cantini F, Haag AF, Brier S, Pizza M, Delany I, Bottomley MJ (2016) Molecular basis of ligand-dependent regulation of NadR, the transcriptional repressor of meningococcal virulence factor NadA. PLoS Pathog 12(4):e1005557.  https://doi.org/10.1371/journal.ppat.1005557 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Lin L, Ayala P, Larson J, Mulks M, Fukuda M, Carlsson SR, Enns C, So M (1997) The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 24(5):1083–1094PubMedCrossRefPubMedCentralGoogle Scholar
  126. Liu G, Tang CM, Exley RM (2015) Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161(7):1297–1312.  https://doi.org/10.1099/mic.0.000086 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM (2013) Temperature triggers immune evasion by Neisseria meningitidis. Nature 502(7470):237–240.  https://doi.org/10.1038/nature12616 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Louwen R, Staals RH, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78(1):74–88.  https://doi.org/10.1128/MMBR.00039-13 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Mackey WC, Immerman RS (2003) A proposed feedback loop of sexually transmitted diseases and sexual behavior: the Red Queen’s Dilemma. Soc Biol 50(3–4):281–299PubMedPubMedCentralGoogle Scholar
  130. MacNeil J, Cohn A (2011) Meningococcal disease. In: Roush LMB SW (ed) Vaccine preventable diseases surveillance manual, 6th edn. Centers for Disease Control and Prevention, Atlanta, GAGoogle Scholar
  131. Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9(4):e1003468.  https://doi.org/10.1371/journal.pgen.1003468 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55–61.  https://doi.org/10.1038/nature15386 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Marri PR, Paniscus M, Weyand NJ, Rendon MA, Calton CM, Hernandez DR, Higashi DL, Sodergren E, Weinstock GM, Rounsley SD, So M (2010) Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5(7):e11835.  https://doi.org/10.1371/journal.pone.0011835 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM (2002) Cutting edge: immune stimulation by Neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 168(4):1533–1537PubMedCrossRefPubMedCentralGoogle Scholar
  135. Massari P, Ram S, Macleod H, Wetzler LM (2003) The role of porins in Neisserial pathogenesis and immunity. Trends Microbiol 11(2):87–93PubMedCrossRefPubMedCentralGoogle Scholar
  136. McGee ZA, Johnson AP, Taylor-Robinson D (1981) Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143(3):413–422PubMedCrossRefPubMedCentralGoogle Scholar
  137. McKenna JG, Fallon RJ, Moyes A, Young H (1993) Anogenital non-gonococcal Neisseriae: prevalence and clinical significance. Int J STD AIDS 4(1):8–12.  https://doi.org/10.1177/095646249300400103 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Mehr IJ, Seifert HS (1997) Random shuttle mutagenesis: gonococcal mutants deficient in pilin antigenic variation. Mol Microbiol 23(6):1121–1131PubMedCrossRefPubMedCentralGoogle Scholar
  139. Mehr IJ, Seifert HS (1998) Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30(4):697–710PubMedCrossRefPubMedCentralGoogle Scholar
  140. Melly MA, McGee ZA, Rosenthal RS (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149(3):378–386PubMedCrossRefPubMedCentralGoogle Scholar
  141. Metruccio MM, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N, Hill SA, Scarlato V, Delany I (2009) A novel phase variation mechanism in the meningococcus driven by a ligand-responsive repressor and differential spacing of distal promoter elements. PLoS Pathog 5(12):e1000710.  https://doi.org/10.1371/journal.ppat.1000710 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Meyer TF, Billyard E, Haas R, Storzbach S, So M (1984) Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc Natl Acad Sci U S A 81:6110–6114PubMedPubMedCentralCrossRefGoogle Scholar
  143. Meyer J, Brissac T, Frapy E, Omer H, Euphrasie D, Bonavita A, Nassif X, Bille E (2016) Characterization of MDAPhi, a temperate filamentous bacteriophage of Neisseria meningitidis. Microbiology 162(2):268–282.  https://doi.org/10.1099/mic.0.000215 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Miller F, Phan G, Brissac T, Bouchiat C, Lioux G, Nassif X, Coureuil M (2014) The hypervariable region of meningococcal major pilin PilE controls the host cell response via antigenic variation. MBio 5(1):e01024–e01013.  https://doi.org/10.1128/mBio.01024-13 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13(1):9–15PubMedCrossRefPubMedCentralGoogle Scholar
  146. Miyoshi D, Nakao A, Sugimoto N (2003) Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res 31(4):1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  147. Moore J, Bailey SE, Benmechernene Z, Tzitzilonis C, Griffiths NJ, Virji M, Derrick JP (2005) Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J Biol Chem 280(36):31489–31497.  https://doi.org/10.1074/jbc.M506354200 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333.  https://doi.org/10.1146/annurev.genet.40.110405.090442 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Mulks MH, Shoberg RJ (1994) Bacterial immunoglobulin A1 proteases. Methods Enzymol 235:543–554PubMedCrossRefPubMedCentralGoogle Scholar
  150. Murphy GL, Connell TD, Barritt DS, Koomey M, Cannon JG (1989) Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56(4):539–547PubMedCrossRefPubMedCentralGoogle Scholar
  151. Muzzi A, Mora M, Pizza M, Rappuoli R, Donati C (2013) Conservation of meningococcal antigens in the genus Neisseria. MBio 4(3):e00163–e00113.  https://doi.org/10.1128/mBio.00163-13 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Nagpal P, Jafri S, Reddy MA, Das HK (1989) Multiple chromosomes of Azotobacter vinelandii. J Bacteriol 171(6):3133–3138PubMedPubMedCentralCrossRefGoogle Scholar
  153. Neil RB, Apicella MA (2009) Role of HrpA in biofilm formation of Neisseria meningitidis and regulation of the hrpBAS transcripts. Infect Immun 77(6):2285–2293.  https://doi.org/10.1128/IAI.01502-08 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ngampasutadol J, Ram S, Gulati S, Agarwal S, Li C, Visintin A, Monks B, Madico G, Rice PA (2008) Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J Immunol 180(5):3426–3435PubMedCrossRefPubMedCentralGoogle Scholar
  155. Obergfell KP, Seifert HS (2015) Mobile DNA in the pathogenic Neisseria. Microbiol Spectr 3(1). MDNA3-0015-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0015-2014
  156. Park HS, Wolfgang M, van Putten JP, Dorward D, Hayes SF, Koomey M (2001) Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol Microbiol 42(2):293–307PubMedCrossRefGoogle Scholar
  157. Pecoraro V, Zerulla K, Lange C, Soppa J (2011) Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species. PLoS One 6(1):e16392.  https://doi.org/10.1371/journal.pone.0016392 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I (2004) Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68(1):154–171PubMedPubMedCentralCrossRefGoogle Scholar
  159. Pirofski LA, Casadevall A (2012) Q and A: what is a pathogen? A question that begs the point. BMC Biol 10:6.  https://doi.org/10.1186/1741-7007-10-6 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Plaut AG, Gilbert JV, Artenstein MS, Capra JD (1975) Neisseria gonorrhoeae and neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 190(4219):1103–1105PubMedCrossRefGoogle Scholar
  161. Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325(6103):458–462.  https://doi.org/10.1038/325458a0 CrossRefPubMedGoogle Scholar
  162. Poole SJ, Diner EJ, Aoki SK, Braaten BA, t’Kint de Roodenbeke C, Low DA, Hayes CS (2011) Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 7(8):e1002217.  https://doi.org/10.1371/journal.pgen.1002217 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Power PM, Roddam LF, Rutter K, Fitzpatrick SZ, Srikhanta YN, Jennings MP (2003) Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 49(3):833–847PubMedCrossRefGoogle Scholar
  164. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci U S A 112(19):6164–6169.  https://doi.org/10.1073/pnas.1422340112 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637.  https://doi.org/10.1093/nar/gkv862 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Rice PA, Shafer WM, Ram S, Jerse AE (2017) Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 71:665–686.  https://doi.org/10.1146/annurev-micro-090816-093530 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Robson RL, Chesshyre JA, Wheeler C, Jones R, Woodley PR, Postgate JR (1984) Genome size and complexity in Azotobacter chroococcum. J Gen Microbiol 130(7):1603–1612PubMedPubMedCentralGoogle Scholar
  168. Rotman E, Seifert HS (2014) The genetics of Neisseria species. Annu Rev Genet 48:405–431.  https://doi.org/10.1146/annurev-genet-120213-092007 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Rotman E, Webber DM, Seifert HS (2016) Analyzing Neisseria gonorrhoeae pilin antigenic variation using 454 sequencing technology. J Bacteriol 198:2470–2482.  https://doi.org/10.1128/JB.00330-16 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Rouphael NG, Stephens DS (2012) Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol Biol 799:1–20.  https://doi.org/10.1007/978-1-61779-346-2_1 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Rudel T, van Putten JP, Gibbs CP, Haas R, Meyer TF (1992) Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 6(22):3439–3450PubMedCrossRefPubMedCentralGoogle Scholar
  172. Sadarangani M, Pollard AJ (2010) Serogroup B meningococcal vaccines-an unfinished story. Lancet Infect Dis 10(2):112–124.  https://doi.org/10.1016/S1473-3099(09)70324-X CrossRefPubMedPubMedCentralGoogle Scholar
  173. Sadarangani M, Pollard AJ, Gray-Owen SD (2011) Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 35(3):498–514.  https://doi.org/10.1111/j.1574-6976.2010.00260.x CrossRefPubMedGoogle Scholar
  174. Saleem M, Prince SM, Rigby SE, Imran M, Patel H, Chan H, Sanders H, Maiden MC, Feavers IM, Derrick JP (2013) Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One 8(2):e56746.  https://doi.org/10.1371/journal.pone.0056746 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Sarantis H, Gray-Owen SD (2012) Defining the roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infect Immun 80(1):345–358.  https://doi.org/10.1128/IAI.05702-11 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Sarkari J, Pandit N, Moxon ER, Achtman M (1994) Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol 13(2):207–217PubMedCrossRefPubMedCentralGoogle Scholar
  177. Saunders NJ (2000) Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol 37(1):207–215PubMedCrossRefGoogle Scholar
  178. Schielke S, Huebner C, Spatz C, Nagele V, Ackermann N, Frosch M, Kurzai O, Schubert-Unkmeir A (2009) Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family. Mol Microbiol 72(4):1054–1067.  https://doi.org/10.1111/j.1365-2958.2009.06710.x CrossRefPubMedGoogle Scholar
  179. Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17(1):14–56PubMedPubMedCentralCrossRefGoogle Scholar
  180. Schmitt C, Turner D, Boesl M, Abele M, Frosch M, Kurzai O (2007) A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells. J Bacteriol 189(22):7968–7976.  https://doi.org/10.1128/JB.00851-07 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 105(9):3473–3478.  https://doi.org/10.1073/pnas.0800151105 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Scholten RJ, Kuipers B, Valkenburg HA, Dankert J, Zollinger WD, Poolman JT (1994) Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA with monoclonal antibodies. J Med Microbiol 41(4):236–243PubMedCrossRefPubMedCentralGoogle Scholar
  183. Schryvers AB, Stojiljkovic I (1999) Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32(6):1117–1123PubMedCrossRefPubMedCentralGoogle Scholar
  184. Sechman EV, Rohrer MS, Seifert HS (2005) A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 57(2):468–483.  https://doi.org/10.1111/j.1365-2958.2005.04657.x CrossRefPubMedPubMedCentralGoogle Scholar
  185. Serino L, Virji M (2000) Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol Microbiol 35(6):1550–1559PubMedCrossRefPubMedCentralGoogle Scholar
  186. Siena E, D’Aurizio R, Riley D, Tettelin H, Guidotti S, Torricelli G, Moxon ER, Medini D (2016) In-silico prediction and deep-DNA sequencing validation indicate phase variation in 115 Neisseria meningitidis genes. BMC Genomics 17(1):843.  https://doi.org/10.1186/s12864-016-3185-1 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sigurlásdóttir S, Engman J, Eriksson OS, Saroj SD, Zguna N, Lloris-Garcerá P, Ilag LL, Jonsson A-B, Tang C (2017) Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal. PLoS Pathog 13(4):e1006251PubMedPubMedCentralCrossRefGoogle Scholar
  188. Simon MC, Schmidt HJ (2007) Antigenic variation in ciliates: antigen structure, function, expression. J Eukaryot Microbiol 54(1):1–7.  https://doi.org/10.1111/j.1550-7408.2006.00226.x CrossRefPubMedPubMedCentralGoogle Scholar
  189. Simons MP, Nauseef WM, Apicella MA (2005) Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect Immun 73(4):1971–1977.  https://doi.org/10.1128/IAI.73.4.1971-1977.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Skaar EP, Lazio MP, Seifert HS (2002) Roles of the recJ and recN genes in homologous recombination and DNA repair pathways of Neisseria gonorrhoeae. J Bacteriol 184(4):919–927PubMedPubMedCentralCrossRefGoogle Scholar
  191. Smith H, Yates EA, Cole JA, Parsons NJ (2001) Lactate stimulation of gonococcal metabolism in media containing glucose: mechanism, impact on pathogenicity, and wider implications for other pathogens. Infect Immun 69(11):6565–6572.  https://doi.org/10.1128/IAI.69.11.6565-6572.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Snyder LA, Butcher SA, Saunders NJ (2001) Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147(Pt 8):2321–2332PubMedCrossRefGoogle Scholar
  193. Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371PubMedPubMedCentralGoogle Scholar
  194. Spinosa MR, Progida C, Tala A, Cogli L, Alifano P, Bucci C (2007) The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75(7):3594–3603.  https://doi.org/10.1128/IAI.01945-06 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Stein DC, Gunn JS, Radlinska M, Piekarowicz A (1995) Restriction and modification systems of Neisseria gonorrhoeae. Gene 157(1–2):19–22PubMedCrossRefGoogle Scholar
  196. Stein DC, Miller CJ, Bhoopalan SV, Sommer DD (2011) Sequence-based predictions of lipooligosaccharide diversity in the Neisseriaceae and their implication in pathogenicity. PLoS One 6(4):e18923.  https://doi.org/10.1371/journal.pone.0018923 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Stephens DS (2009) Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 27(Suppl 2):B71–B77.  https://doi.org/10.1016/j.vaccine.2009.04.070 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Stephens DS, Spellman PA, Swartley JS (1993) Effect of the (alpha 2-->8)-linked polysialic acid capsule on adherence of Neisseria meningitidis to human mucosal cells. J Infect Dis 167(2):475–479PubMedCrossRefGoogle Scholar
  199. Stern A, Brown M, Nickel P, Meyer TF (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47(1):61–71PubMedCrossRefGoogle Scholar
  200. Stohl EA, Dale EM, Criss AK, Seifert HS (2013) Neisseria gonorrhoeae metalloprotease NGO1686 is required for full piliation, and piliation is required for resistance to H2O2- and neutrophil-mediated killing. MBio 4(4):e00399-13.  https://doi.org/10.1128/mBio.00399-13 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Swanson J (1978) Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. Infect Immun 19:320–331PubMedPubMedCentralGoogle Scholar
  202. Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger JD, Stephens DS (1997) Capsule switching of Neisseria meningitidis. Proc Natl Acad Sci U S A 94(1):271–276PubMedPubMedCentralCrossRefGoogle Scholar
  203. Taha MK, Claus H, Lappann M, Veyrier FJ, Otto A, Becher D, Deghmane AE, Frosch M, Hellenbrand W, Hong E, Parent du Chatelet I, Prior K, Harmsen D, Vogel U (2016) Evolutionary events associated with an outbreak of meningococcal disease in men who have sex with men. PLoS One 11(5):e0154047.  https://doi.org/10.1371/journal.pone.0154047 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Takahashi H, Yanagisawa T, Kim KS, Yokoyama S, Ohnishi M (2012) Meningococcal PilV potentiates Neisseria meningitidis type IV pilus-mediated internalization into human endothelial and epithelial cells. Infect Immun 80(12):4154–4166.  https://doi.org/10.1128/IAI.00423-12 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Tala A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P (2008) The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 10(12):2461–2482.  https://doi.org/10.1111/j.1462-5822.2008.01222.x CrossRefPubMedPubMedCentralGoogle Scholar
  206. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, Venter JC (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815PubMedCrossRefPubMedCentralGoogle Scholar
  207. Tobiason DM, Seifert HS (2006a) The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 4(6):e185.  https://doi.org/10.1371/journal.pbio.0040185 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Tobiason DM, Seifert HS (2006b) The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 4(6):1069–1078CrossRefGoogle Scholar
  209. Tobiason DM, Seifert HS (2010) Genomic content of Neisseria species. J Bacteriol 192(8):2160–2168.  https://doi.org/10.1128/JB.01593-09 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Toleman M, Aho E, Virji M (2001) Expression of pathogen-like Opa adhesins in commensal Neisseria: genetic and functional analysis. Cell Microbiol 3(1):33–44PubMedCrossRefPubMedCentralGoogle Scholar
  211. Tommassen J, Vermeij P, Struyve M, Benz R, Poolman JT (1990) Isolation of Neisseria meningitidis mutants deficient in class 1 (porA) and class 3 (porB) outer membrane proteins. Infect Immun 58(5):1355–1359PubMedPubMedCentralGoogle Scholar
  212. Tonjum T (2005) Genus I. Neisseria. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 777–798CrossRefGoogle Scholar
  213. Toussi DN, Carraway M, Wetzler LM, Lewis LA, Liu X, Massari P (2012) The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation. Infect Immun 80(10):3417–3428.  https://doi.org/10.1128/IAI.00683-12 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Turner DP, Wooldridge KG, Ala’Aldeen DA (2002) Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein. Infect Immun 70(8):4447–4461PubMedPubMedCentralCrossRefGoogle Scholar
  215. Tzeng YL, Datta A, Ambrose K, Lo M, Davies JK, Carlson RW, Stephens DS, Kahler CM (2004) The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 279(33):35053–35062.  https://doi.org/10.1074/jbc.M401433200 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Tzeng YL, Thomas J, Stephens DS (2016) Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol 42(5):759–772.  https://doi.org/10.3109/1040841X.2015.1022507 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Tzeng YL, Bazan JA, Turner AN, Wang X, Retchless AC, Read TD, Toh E, Nelson DE, Del Rio C, Stephens DS (2017) Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc Natl Acad Sci U S A 114(16):4237–4242.  https://doi.org/10.1073/pnas.1620971114 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Uehara T, Park JT (2007) An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol 189(15):5634–5641.  https://doi.org/10.1128/JB.00446-07 CrossRefPubMedPubMedCentralGoogle Scholar
  219. Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S, Kim KS, Eigenthaler M, Frosch M (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46(4):933–946PubMedCrossRefPubMedCentralGoogle Scholar
  220. Urra E, Alkorta M, Sota M, Alcala B, Martinez I, Barron J, Cisterna R (2005) Orogenital transmission of Neisseria meningitidis serogroup C confirmed by genotyping techniques. Eur J Clin Microbiol Infect Dis 24(1):51–53.  https://doi.org/10.1007/s10096-004-1257-7 CrossRefPubMedPubMedCentralGoogle Scholar
  221. van der Ende A, Hopman CT, Dankert J (2000) Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect Immun 68(12):6685–6690PubMedPubMedCentralCrossRefGoogle Scholar
  222. van der Woude MW (2011) Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 14(2):205–211.  https://doi.org/10.1016/j.mib.2011.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  223. van Ulsen P, van Alphen L, ten Hove J, Fransen F, van der Ley P, Tommassen J (2003) A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol 50(3):1017–1030PubMedCrossRefPubMedCentralGoogle Scholar
  224. van Vliet SJ, Steeghs L, Bruijns SC, Vaezirad MM, Snijders Blok C, Arenas Busto JA, Deken M, van Putten JP, van Kooyk Y (2009) Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog 5(10):e1000625.  https://doi.org/10.1371/journal.ppat.1000625 CrossRefPubMedPubMedCentralGoogle Scholar
  225. Vaughan AT, Gorringe A, Davenport V, Williams NA, Heyderman RS (2009) Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage. J Immunol 182(4):2231–2240.  https://doi.org/10.4049/jimmunol.0802531 CrossRefPubMedPubMedCentralGoogle Scholar
  226. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5(11):1166–1174.  https://doi.org/10.1038/ni1131 CrossRefPubMedGoogle Scholar
  227. Virji M (2009) Pathogenic Neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7(4):274–286.  https://doi.org/10.1038/nrmicro2097 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Virji M, Makepeace K, Ferguson DJ, Achtman M, Sarkari J, Moxon ER (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 6(19):2785–2795PubMedCrossRefPubMedCentralGoogle Scholar
  229. Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER (1993a) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 10(3):499–510PubMedCrossRefPubMedCentralGoogle Scholar
  230. Virji M, Saunders JR, Sims G, Makepeace K, Maskell D, Ferguson DJ (1993b) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10(5):1013–1028PubMedCrossRefPubMedCentralGoogle Scholar
  231. Virji M, Makepeace K, Ferguson DJ, Watt SM (1996) Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic Neisseriae. Mol Microbiol 22(5):941–950PubMedCrossRefPubMedCentralGoogle Scholar
  232. Virji M, Evans D, Hadfield A, Grunert F, Teixeira AM, Watt SM (1999) Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 34(3):538–551PubMedCrossRefPubMedCentralGoogle Scholar
  233. Walker CK, Sweet RL (2011) Gonorrhea infection in women: prevalence, effects, screening, and management. Int J Womens Health 3:197–206.  https://doi.org/10.2147/IJWH.S13427 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Weyand NJ, Ma M, Phifer-Rixey M, Taku NA, Rendon MA, Hockenberry AM, Kim WJ, Agellon AB, Biais N, Suzuki TA, Sait LG, Harrison OB, Bratcher HB, Nachman MW, Maiden MC, So M (2016) Isolation and characterization of a new species of Neisseria, Neisseria musculi, from the wild house mouse. Int J Syst Evol Microbiol 66(9):3585–3593.  https://doi.org/10.1099/ijsem.0.001237 CrossRefPubMedPubMedCentralGoogle Scholar
  235. WHO (2012) Global incidence and prevalence of selected curable sexually transmitted infections – 2008. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  236. Wiesner PJ, Thompson SE 3rd (1980) Gonococcal diseases. Dis Mon 26(5):1–44PubMedCrossRefPubMedCentralGoogle Scholar
  237. Wolf DM, Vazirani VV, Arkin AP (2005) A microbial modified prisoner’s dilemma game: how frequency-dependent selection can lead to random phase variation. J Theor Biol 234(2):255–262.  https://doi.org/10.1016/j.jtbi.2004.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29(1):321–330PubMedCrossRefPubMedCentralGoogle Scholar
  239. Woodhams KL, Benet ZL, Blonsky SE, Hackett KT, Dillard JP (2012) Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol 194(9):2275–2285.  https://doi.org/10.1128/JB.00094-12 CrossRefPubMedPubMedCentralGoogle Scholar
  240. Woodhams KL, Chan JM, Lenz JD, Hackett KT, Dillard JP (2013) Peptidoglycan fragment release from Neisseria meningitidis. Infect Immun 81(9):3490–3498.  https://doi.org/10.1128/iai.00279-13 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Workowski KA (2015) Centers for disease control and prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis 61(Suppl 8):S759–S762.  https://doi.org/10.1093/cid/civ771 CrossRefPubMedPubMedCentralGoogle Scholar
  242. Workowski KA, Bolan GA, Centers for Disease C, Prevention (2015) Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 64(RR-03):1–137PubMedPubMedCentralGoogle Scholar
  243. Wormann ME, Horien CL, Bennett JS, Jolley KA, Maiden MC, Tang CM, Aho EL, Exley RM (2014) Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. BMC Genomics 15:253.  https://doi.org/10.1186/1471-2164-15-253 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Yang QL, Gotschlich EC (1996) Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J Exp Med 183(1):323–327PubMedCrossRefPubMedCentralGoogle Scholar
  245. Yazdankhah SP, Kriz P, Tzanakaki G, Kremastinou J, Kalmusova J, Musilek M, Alvestad T, Jolley KA, Wilson DJ, McCarthy ND, Caugant DA, Maiden MC (2004) Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42(11):5146–5153.  https://doi.org/10.1128/JCM.42.11.5146-5153.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  246. Zhang Y (2017) The CRISPR-Cas9 system in Neisseria spp. Pathog Dis 75(4).  https://doi.org/10.1093/femspd/ftx036
  247. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7:18.  https://doi.org/10.1186/1745-6150-7-18 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503.  https://doi.org/10.1016/j.molcel.2013.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  249. Zimmer SM, Stephens DS (2006) Serogroup B meningococcal vaccines. Curr Opin Investig Drugs 7(8):733–739PubMedPubMedCentralGoogle Scholar
  250. Zughaier SM, Tzeng YL, Zimmer SM, Datta A, Carlson RW, Stephens DS (2004) Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun 72(1):371–380PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Northwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations