Advertisement

Functional Nanofiber Mats for Medical and Biotechnological Applications

  • Robin Böttjer
  • Timo Grothe
  • Andrea Ehrmann
Chapter

Abstract

Nanofiber mats from different polymers, possibly blended with other organic or inorganic components, can be created by the electrospinning technology. Such nanofiber mats possess large surface–volume ratios in comparison with other textile fabrics, such as common nonwovens. This property enables enhanced interactions with their environment, making them suitable for applications in wound dressing, drug delivery, biotechnological filter technology, etc., especially if prepared from biopolymers with intrinsically antimicrobial or other qualities. In a recent project, we investigate the possibilities to create such nanofiber mats from diverse (bio-) polymers by “green” electrospinning, i.e., electrospinning from aqueous solutions or other nontoxic solvents. The article gives an overview of the latest results from needleless electrospinning pure polymers and polymer blends as well as typical physical and chemical properties of the created nanofiber mats, especially for medical and biotechnological purposes, and shows diverse possibilities to crosslink water-soluble biopolymer nanofiber mats.

Notes

Acknowledgements

The authors acknowledge gratefully the program FH basis of the German federal country North Rhine-Westphalia for funding the “Nanospider Lab”. This investigation was partly funded by the HiF fund of Bielefeld University of Applied Sciences.

References

  1. 1.
    Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of Nanofibers. Journal of Applied Polymer Science, 96, 557–569.CrossRefGoogle Scholar
  2. 2.
    Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46, 5670–5703.CrossRefGoogle Scholar
  3. 3.
    Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16, 1151–1170.CrossRefGoogle Scholar
  4. 4.
    Teo, W. E., Inai, R., & Ramakrishna, S. (2011). Technological advances in electrospinning of nanofibers. Science Technology Advances Materials, 12, 013002.CrossRefGoogle Scholar
  5. 5.
    Agarwal, S., Greiner, A., & Wendorff, J. H. (2013). Functional materials by electrospinning of polymers. Progress in Polymer Science, 38, 963–991.CrossRefGoogle Scholar
  6. 6.
    Ashammakhi, N., Ndreu, A., Yang, Y., Ylikauppila, H., & Nikkola, L. (2012). Nanofiber-based scaffolds for tissue engineering. European Journal of Plastic Surgery, 35, 135–149.CrossRefGoogle Scholar
  7. 7.
    Wang, X., Kim, Y. G., Drew, C., Ku, B. C., Kumar, J., & Samuelson, L. A. (2004). Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors. Nano Letters, 4, 331–334.CrossRefGoogle Scholar
  8. 8.
    Lackowski, M., Krupa, A., & Jaworek, A. (2011). Nonwoven filtration mat production by electrospinning method. Journal of Physics: Conference Series, 301, 012013.Google Scholar
  9. 9.
    Filatov, Y., Budyka, A., & Kirichenko, V. (2007). Electrospinning of Micro- and Nanofibers: Fundamentals and Applications in Separation and Filtration Processes. Moscow: Begell House Inc.Google Scholar
  10. 10.
    Lemma, S. M., Esposito, A., Mason, M., Brusetti, L., Cesco, S., & Scampicchio, M. (2015). Removal of bacteria and yeast in water and beer by nylon nanofibrous membranes. Journal of Food Engineering, 157, 1–6.CrossRefGoogle Scholar
  11. 11.
    Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., et al. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/polyepsilon-caprolactone blend. Biomaterials, 28, 3012–3025.CrossRefGoogle Scholar
  12. 12.
    Klinkhammer, K., Seiler, N., Grafahrend, D., Gerardo-Nava, J., Mey, J., Brook, G. A., et al. (2009). Deposition of electrospun fibers on reactive substrates for in vitro investigations. Tissue Engineering Part C, 15, 77–85.CrossRefGoogle Scholar
  13. 13.
    Großerhode, C., Wehlage, D., Grothe, T., Grimmelsmann, N., Fuchs, S., Hartmann, J., et al. (2017). Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioengineering, 4, 376–385.CrossRefGoogle Scholar
  14. 14.
    Wang, J. N., Zhao, W. W., Wang, B., Pei, G., & Li, C. (2017). Multilevel-layer-structured polyamide 6/poly(trimethylene terephthalate) nanofibrous membranes for low-pressure air filtration. Journal of Applied Polymer Science, 134, 44716.Google Scholar
  15. 15.
    Mao, Z. P., Xie, R. Y., Fu, D. W., Zhang, L., Xu, H., Zhong, Y., et al. (2017). PAN supported Ag-AgBr@Bi20TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability. Separation and Purification Technology, 176, 277–286.CrossRefGoogle Scholar
  16. 16.
    Porett, F., Rosen, T., Körner, B., & Vorwerk, D. (2005). Chitosan pads versus manual compression to control bleeding sites after transbrachial arterial catheterization in a randomized trial. Fortschr Röntgenstr, 177,1260–1266.Google Scholar
  17. 17.
    Tayel, A. A., El-Tras, W. F., & Elguindy, N. M. (2016). The potentiality of cross-linked fungal chitosan to control water contamination through bioactive filtration. International Journal of Biological Macromolecules, 88, 59–65.CrossRefGoogle Scholar
  18. 18.
    Fulton, J. E. (1990). The Stimulation of Postdermabrasion Wound Healing with Stabilized Aloe Vera Gel-Polyethylene Oxide Dressing. The Journal of Dermatologic Surgery and Oncology, 16, 460–467.CrossRefGoogle Scholar
  19. 19.
    Chithra, P., Sajithlal, G. B., & Chandrakasan, G. (1998). Influence of Aloe vera on collagen characteristics in healing dermal wounds in rats. Molecular and Cellular Biochemistry, 181, 71–76.CrossRefGoogle Scholar
  20. 20.
    Surjushe, A., Vasani, R., & Saple, D. G. (2008). Aloe vera: A short review. Indian Journal of Dermatology, 53, 163–166.CrossRefGoogle Scholar
  21. 21.
    Seymour, J. (1997). Alginate dressings in wound care management. Nursing Times, 93, 49–52.Google Scholar
  22. 22.
    Ebrahimi-Hosseinzadeh, B., Pedram, M., Hatamian-Zarmi, A., Salahshour-Kordestani, S., Rasti, M., Mokhtari-Hosseini, Z. B., et al. (2016). In vivo evaluation of gelatin/hyaluronic acid nanofiber as Burn-wound healing and its comparison with ChitoHeal gel. Fibers and Polymers, 17, 820–826.CrossRefGoogle Scholar
  23. 23.
    Lee, E. J., Lee, J. H., Jin, L., Jin, O. S., Shin, Y. C., & Oh, S. J. (2014). Lee, Hyon S H, Han D W. Hyaluronic Acid/Poly(lactic-co-glycolic acid) Core/Shell Fiber Meshes Loaded with Epigallocatechin-3-O-Gallate as Skin Tissue Engineering Scaffolds. Journal of Nanoscience Nanotechnology, 11, 8458–8463.CrossRefGoogle Scholar
  24. 24.
    Yao, C. H., Lee, C. Y., Huang, C. H., Chen, Y. S., & Chen, K. Y. (2017). Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Materials Science and Engineering C, 79, 533–540.CrossRefGoogle Scholar
  25. 25.
    Ferraris, S., Giachet, F. T., Miola, M., Bertone, E., Varesano, A., Vineis, C., et al. (2017). Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion. Materials Science and Engineering C, 76, 1–12.CrossRefGoogle Scholar
  26. 26.
    Li, B., Huang, C., & Yang, X. (2017). Preparation and Characterization of Electrospun Wool Keratin/Polyethylene Oxide Nanofibers for Air Filtration Applications. Digest Journal of Nanomaterials and Biostructures, 12, 293–301.Google Scholar
  27. 27.
    LeCorre, Bordes D. S., Jaksons, P., & Hofman, K. (2017). Mind the gap: Ensuring laboratory-scale testing of an electrospinning product meets commercial-scale needs. Journal of Applied Polymer Science, 134, 44836.Google Scholar
  28. 28.
    Kovalenko, G. M., Bokova, E. S., Filatov, I. Y., & Mirontseva, V. V. (2017). Electrospun Fibrous Materials Made of Collagen and Chitin Derivatives. Fibre Chemistry, 48, 466–469.CrossRefGoogle Scholar
  29. 29.
    Sensini, A., Gualandi, C., Cristofolini, L., Tozzi, G., Dicarlo, M., Teti, G., et al. (2017). Biofabrication of bundles of poly(lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication, 9, 015025.CrossRefGoogle Scholar
  30. 30.
    Maslakci, N. N., Ulusoy, S., Uygun, E., Cevikbas, H., Oksuz, L., Can, H. K., et al. (2017). Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications. Polymer Bulletin, 74, 3283–3299.CrossRefGoogle Scholar
  31. 31.
    Rzayev, Z. M. O., Bunyatova, U., & Simsek, M. (2017). Multifunctional colloidal nanofiber composites including dextran and folic acid as electro-active platforms. Carbohydrate Polymers, 166, 83–92.CrossRefGoogle Scholar
  32. 32.
    Kumar, Y. S., Unnithan, A. R., Sen, D., Kim, C. S., & Lee, Y. S. (2015). Microgravity biosynthesized penicillin loaded electrospun polyurethane-dextran nanofibrous mats for biomedical applications. Colloids and Surfaces A—Physiochemical and Engineering Aspects, 477, 77–83.Google Scholar
  33. 33.
    Natu, M. V., de Sousa, H. C., & Gil, M. H. (2011). Electrospun Drug-Eluting Fibers for Biomedical Applications. Active Implants and Scaffolds for Tissue Engineering, 8, 57–85.CrossRefGoogle Scholar
  34. 34.
    Pan, J. F., Liu, N. H., Sun, H., & Xu, F. (2014). Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering. PLoS ONE, 9, e112885.CrossRefGoogle Scholar
  35. 35.
    Gu, J. Y., Liu, N. H., Yang, X. R., Feng, Z. H., & Qi, F. Z. (2014). Adiposed-derived stem cells seeded on PLCL/P123 eletrospun nanofibrous scaffold enhance wound healing. Biomedical Materials, 9, 035012.CrossRefGoogle Scholar
  36. 36.
    Wong, R. S. H., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305–319.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Bielefeld University of Applied SciencesBielefeldGermany

Personalised recommendations