Advertisement

Exposing Latent Mutual Exclusion by Work Automata

  • Kasper DokterEmail author
  • Farhad Arbab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10608)

Abstract

A concurrent application consists of a set of concurrently executing interacting processes. Although earlier we proposed work automata to specify both computation and interaction of such a set of executing processes, a detailed formal semantics for them was left implicit. In this paper, we provide a formal semantics for work automata, based on which we introduce equivalences such as weak simulation and weak language inclusion. Subsequently, we define operations on work automata that simplify them while preserving these equivalences. Where applicable, these operations simplify a work automaton by merging its different states into a state with a ‘more inclusive’ state-invariant. The resulting state-invariant defines a region in a multidimensional real vector space that potentially contains holes, which in turn expose mutual exclusion among processes. Such exposed dependencies provide additional insight in the behavior of an application, which can enhance scheduling. Our operations, therefore, potentially expose implicit dependencies among processes that otherwise may not be evident to exploit.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F.S., Rutten, J.: Models and temporal logics for timed component connectors. In: Proceedings of SEFM, pp. 198–207 (2004)Google Scholar
  3. 3.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dokter, K., Jongmans, S.-S., Arbab, F.: Scheduling games for concurrent systems. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 84–100. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39519-7_6 Google Scholar
  5. 5.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer Science & Business Media. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    van Glabbeek, R.J.: Bisimulation semantics for higher dimensional automata. Email message, July 1991. http://theory.stanford.edu/~rvg/hda
  7. 7.
    van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Theor. Comput. Sci. 356(3), 265–290 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    van Glabbeek, R.J., Vaandrager, F.: The difference between splitting in \(n\) and \(n+1\). Inform. Comput. 136(2), 109–142 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goubault, E., Jensen, T.P.: Homology of higher dimensional automata. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 254–268. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0084796 CrossRefGoogle Scholar
  10. 10.
    Gunawardena, J.: Homotopy and concurrency. In: Păun, B., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science, pp. 447–459. World Scientific (2001)Google Scholar
  11. 11.
    Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems, pp. 265–292. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Koehler, C., Clarke, D.: Decomposing port automata. In: Proceedings of SAC, pp. 1369–1373. ACM (2009)Google Scholar
  13. 13.
    Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, New York (1989)Google Scholar
  14. 14.
    Pratt, V.: Modeling concurrency with geometry. In: Proceedings of POPL, pp. 311–322. ACM (1991)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Centrum Wiskunde & InformaticaAmsterdamNetherlands

Personalised recommendations