Advertisement

The Río de la Plata Craton of Argentina and Uruguay

  • Pedro OyhantçabalEmail author
  • Carlos A. Cingolani
  • Klaus Wemmer
  • Siegfried Siegesmund
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

The geology and the tectonic evolution of the Río de la Plata Craton is reviewed, taking into account geochronological, isotopic and geophysical data. The craton consists of voluminous granite-gneissic terrains (2.2–2.1 Ga) that represent magmatism during the accretional stage of the orogeny. Coeval volcano-sedimentary basins are preserved as relics of supracrustal rocks, deformed and metamorphosed during a collisional event that occurred at ca. 2.1 Ga. Sm–Nd and Hf model ages between 2.7 and 2.2 Ga, and positive to slightly negative εNd(t) values indicate a Neoarchean to Paleoproterozoic juvenile crust which underwent a short period of crustal recycling. Undeformed granitoids, gabbros and dolerite swarms with calc-alkaline signature intruded at ca. 2.07 Ga correspond to the late- to post-tectonic stages of the orogeny. Exhumation, cooling and cratonization occurred during the Orosirian (2050–1800 Ma) and later anorogenic extension is recorded in tholeiitic dyke swarms intruded at ca. 1.8 Ga in Uruguay and at ca. 1.6 Ga in the Buenos Aires province of Argentina. There is no evidence of Meso- or Neoproterozoic orogenic reworking and only one shallow granite intrusion in Uruguay and low-temperature hydrothermal alteration in the Neoproterozoic cover of the Tandilia System can be ascribed to far-field effects of the Brasiliano orogeny.

Keywords

Río de la Plata Craton Piedra Alta Terrane Tandilia system Geodynamics 

Notes

Acknowledgements

Field and laboratory work by C. Cingolani was funded by CONICET and UNLP grants. P. Oyhantç̧abal gratefully acknowledges grants provided by the DAAD, the German Science Foundation and Comisión Sectorial de Investigación Científica (CSIC) of the Universidad de la República.

References

  1. Abre P et al (2014) El Terreno Tandilia en Uruguay y Argentina. In: Bossi J, Gaucher C (eds) Geología del Uruguay, Tomo 1: Predevónico. Universidad de la República, Montevideo, pp 89–119Google Scholar
  2. Almeida FFM et al (1973) The Precambrian evolution of the South American cratonic margin, South of Amazonas River. In: Nairn ACM et al (eds) The ocean basins and margins. Plenum, New York, pp 411–446Google Scholar
  3. Angeletti M et al (2014) Nuevas edades radiométricas U–Pb SHRIMP en Tandilia, Cerro Siempre Amigos, Sierras de Azul, Buenos Aires, Argentina. XIX Congreso Geológico Argentino, abstract T81Google Scholar
  4. Arrouy MJ et al (2016) Ediacaran discs from South America: probable soft bodied macrofossils unlock the paleo-geography of the Clymene ocean. Scientific Reports 6:30590.  https://doi.org/10.1038/srep30590 CrossRefGoogle Scholar
  5. Basei MAS et al (2016) LAICPMS U–Pb zircon ages from basement and metamorphic cover of Piedra Alta Terrane, Rio de la Plata Craton, Uruguay. Actas VIII Congreso Uruguayo de Geología, MontevideoGoogle Scholar
  6. Borrello AV (1962) Formación Punta Mogotes (Eopaleozoico—Provincia de Buenos Aires). Notas Comisión de Investigación Científica Provincia de Buenos Aires 1(1):1–9Google Scholar
  7. Bossi J, Cingolani C (2009) Extension and general evolution of the Río de la Plata Craton. In: Gaucher C et al (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Develop Precambrian Geol 16: 73–85Google Scholar
  8. Bossi J, Ferrando L (2001) Carta geológica del Uruguay. Geoeditores. CD-ROM, MontevideoGoogle Scholar
  9. Bossi J, Piñeyro D (2004) Complejo Ojosmin: fragment of ophiolite Transamazonian. Actas IV Congreso Uruguayo de Geologia—II Reunion de Geologia Ambiental y ordenamiento Territorial del Mercosur, MontevideoGoogle Scholar
  10. Bossi J, Piñeyro D (2014) Terreno Piedra Alta. In: Bossi J, Gaucher C (eds) Geología del Uruguay. Tomo 1: Predevónico. Universidad de la República, Montevideo, pp 45–86Google Scholar
  11. Bossi J et al (1993a) Early Proterozoic dike swarms from western Uruguay: geochemistry, Sr-Nd isotopes and petrogenesis. Chem Geol 106:263–277Google Scholar
  12. Bossi J et al (1993b) Predevoniano del Uruguay. Parte 1: Terreno Piedra Alta. DINAMIGE, Montevideo, pp 1–50 Google Scholar
  13. Bossi J et al (2005) El límite sur del terreno Piedra Alta (Uruguay). Importancia de la faja milonítica sinistral de Colonia. Actas del XVI Congreso Geológico Argentino (La Plata) vol I, pp 173–179Google Scholar
  14. Campal N (1990) Aportes al conocimiento de la estratigrafía durante el Precámbrico medio del Uruguay (con énfasis en los departamentos de Florida y San José). In: 1º Congreso Uruguayo de Geología. Resúmenes Ampliados vol 1. Montevideo, Uruguay, pp 65–69Google Scholar
  15. Chernicoff CJ et al (2014) The Rhyacian El Cortijo suture zone: aeromagnetic signature and insights for the geodynamic evolution of the southwestern Río de la Plata craton, Argentina. Geosci Front 5:43–52CrossRefGoogle Scholar
  16. Chernicoff CJ et al (2015) Primeras edades UPb SHRIMP del Cratón Río de la Plata en el subsuelo del área metropolitana de Buenos Aires. Rev Asoc Geol Argent 72(4):575–577Google Scholar
  17. Chernicoff CJ et al (2016) Zircon and Titanite U–Pb SHRIMP dating of unexposed basement units of the Buenos Aires region, southeastern Río de La Plata Craton, Argentina. Int Geol Rev 58:643–652Google Scholar
  18. Cingolani CA (2011) The Tandilia system of Argentina as southern extension of the Río de la Plata craton: an overview. Int J Earth Sci 100:221–242CrossRefGoogle Scholar
  19. Cingolani CA, Bonhomme MG (1982) Geochronology of La Tinta Upper Proterozoic sedimentary rocks, Argentina. Precambrian Res 18(1–2):119–132CrossRefGoogle Scholar
  20. Cingolani CA et al (1990) Nuevos datos geológicos y geocronológicos del macizo granítico de Cerro Colorado, Florida, Uruguay. In: Resúmenes Ampliados del Primer Congreso Uruguayo de Geología, vol 1, pp 101–105Google Scholar
  21. Cingolani CA et al (2002) U–Pb SHRIMP dating of zircons from the Buenos Aires complex of the Tandilia Belt. In: Río de la Plata Craton, Argentina. XV Congreso Geológico Argentino. Actas vol 1, pp 149–154Google Scholar
  22. Cingolani CA et al (2010) New insights of the Paleoproterozoic basement of Tandilia belt. In: Río de la Plata Craton, Argentina: first Hf isotope studies on zircon crystals. GeoSur Mar del Plata, Argentina, pp 21–24Google Scholar
  23. Cingolani CA et al (2012) U–Pb (LA-ICP-MS) zircon age of the La Paz Granite (Pando Belt, Uruguay): an upper Neoproterozoic magmatic event in the Río de la Plata Craton. In: VIII Simposio Sudamericano de Geología Isotópica, Medellin, Colombia, 5–7 July 2012Google Scholar
  24. Coronel N et al (1982) Consideraciones estructurales de la Formación Piedras de Afilar. Departamento de Canelones. Uruguay. In: Actas V Congreso Latinoamericano de Geología. Buenos Aires, ArgentinaGoogle Scholar
  25. Dalla Salda LH (1981) Tandilia, un ejemplo de tectónica de transcurrencia en basamento. Rev Asoc Geol Argent 36(2):204–207Google Scholar
  26. Dalla Salda LH et al (1988) The Río de la Plata cratonic region of southwest-ern Gondwana. Episodes 11(4):263–269Google Scholar
  27. Dalla Salda LH et al (2005) El basamento de las Sierras de Tandilia. In: de Barrio RE et al (eds) Geología y recursos minerales de la provincia de Buenos Aires. Relatorio del 16 Congreso Geológico Argentino, La Plata, pp 31–50Google Scholar
  28. Dalla Salda LH et al (2006) Tandilia. In: Temas de Geología Argentina 1. Serie Correlación Geológica, vol 21, pp 17–46. San Miguel de TucumánGoogle Scholar
  29. Delpino SH, Dristas J (2008) Dolomitic marbles and associated calc-silicates, Tandilia belt, Argentina: geothermobarometry, metamorphic evolution, and P-T path. J South Am Earth Sci 25:501–525CrossRefGoogle Scholar
  30. Delpino SH et al (2001) Sucesión de eventos deformacionales en base a las correlaciones entre mesoestructuras, Punta Tota, basamento Paleoproterozoico de Tandilia, Argentina. Rev Asoc Geol Argent, Serie D: Publicación EspecialGoogle Scholar
  31. Dragone GN et al (2017) Western Paraná suture/shear zone and the limits of Río Apa, Río Tebicuary and Río de la Plata cratons from gravity data. Precambrian Res 291:162–177CrossRefGoogle Scholar
  32. Dristas JA, Frisicale MC (1988) Rocas piroclásticas en el sector suroeste de las Sierras Septentrionales de la provincia de Buenos Aires. Rev Asoc Argentina de Mineralogía, Petrología y Sedimentología, Buenos Aires 18(1–4):33–46Google Scholar
  33. Dristas JA, Martínez JC (2007) Hydrothermal low temperature Late Proterozoic unconformity-related hydrothermal iron deposits, in the northern Barker area (Tandilia Ranges, Argentina). Neues Jahrb Geol Paläont 246(3):267–281CrossRefGoogle Scholar
  34. Dristas JA et al (2003) High-REE APS minerals associated with advanced argillic alteration in the Cerrito de la Cruz deposit, Barker, Buenos Aires province, Argentina. Göttinger Arb Geol Paläont Sb (Festschrift Behr) 5:pp. 1–6Google Scholar
  35. Dristas JA et al (2017) Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt), Argentina. J South Am Earth Sci 76:182–197CrossRefGoogle Scholar
  36. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  37. Favetto A et al (2015) A new limit for the NW Río de la Plata Craton border at about 24°S (Argentina) detected by Magnetotellurics. Geologica Acta 13(3):243–254Google Scholar
  38. Fernández AN, Preciozzi F (1974) La formación Arroyo. Grande y los granitoides asociados. In: Annales. XXVIII Congreso Brasilero de Geologia, pp 212–226Google Scholar
  39. Ferrando L, Fernández A (1971) Esquema tectó́nico-cronoestatigráfico del predevoniano en Uruguay. XXV Congreso Brasilero de Geología, vol 1. San Pablo, Paulo, pp 199–210Google Scholar
  40. Frisicale MC (1999) Megacizalla en Boca de la Sierra, Tandilia. Actas 14 Congreso Geológico Argentino. Salta, vol 1, 168–171Google Scholar
  41. Frisicale MC et al (2001) Cinemática de las milonitas del basamento proterozoico en Boca de la Sierra, Sierras de Azul, Buenos Aires. Rev Asoc Geol Argent 56(3):319–330Google Scholar
  42. Frisicale MC et al (2005) Microstructural analysis and P-T conditions of the Azul megashear zone, Tandilia, Buenos Aires province, Argentina. J South Am Earth Sci 19(4):433–444CrossRefGoogle Scholar
  43. Gaucher C et al (2008) Detrital zircon ages of neoproterozoic sedimentary successions in Uruguay and Argentina: insights into the geological evolution of the Río de la Plata Craton. Precambrian Res 167:150–170CrossRefGoogle Scholar
  44. Gianotti V et al (2010) Caracterización Geológico-Estructural Y Estudio Microtectónico de las Zonas de Cizalla de Colonia. VI Congreso Uruguayo de Geología. Minas, CD-ROMGoogle Scholar
  45. Gómez Peral LE et al (2007) Chemo-stratigraphy and diagenetic constraints on neoproterozoic carbonate successions from the Sierras Bayas group, Tandilia system, Argentina. Chem Geol 237:109–128CrossRefGoogle Scholar
  46. Gonzalez Bonorino F et al (1956) Estudio geológico de las Sierras de Olavarría y Azul (Provincia de Buenos Aires). LEMIT, Serie 2(63): 5–22. La PlataGoogle Scholar
  47. Halls HC et al (2001) Magnetic studies and U–Pb geochronology of the Uruguayan dike swarm, Río de la Plata Craton, Uruguay: paleomagnetic and economic implications. J South Am Earth Sci 14:349–361CrossRefGoogle Scholar
  48. Hart SR (1966) Radiometric ages in Uruguay and Argentina and their implications concerning continental drift. In: Geological Society of America. Annual Meeting, vol 86. San Francisco, EEUUGoogle Scholar
  49. Hartmann LA et al (2000) Zircon U–Pb SHRIMP dating of Paleoproterozoic Isla Mala granitic magmatism in the Río de la Plata Craton, Uruguay. J South Am Earth Sci 13:105–113CrossRefGoogle Scholar
  50. Hartmann LA et al (2001) Archean crust in the Río de la Plata Craton, Uruguay—SHRIMP U–Pb zircon reconnoissance geochronology. J South Am Earth Sci 14:557–570CrossRefGoogle Scholar
  51. Hartmann LA et al (2002) Two Paleoproterozoic Orogenies in the evolution of the Tandilia belt, Buenos Aires, as evidenced by zircon U–Pb SHRIMP geochronology. Int Geol Rev 44:528–543.  https://doi.org/10.2747/0020-6814.44.6.528 CrossRefGoogle Scholar
  52. Hartmann LA et al (2008) Geocronología SHRIMP U–Pb en circones del Gabro Rospide del Cinturón Paleoproterozoico San José, Terreno Piedra Alta, Uruguay: una prueba geocronológica de magmas coetáneos. Rev Soc Uru Geol 15:40–53Google Scholar
  53. Iacumin M et al (2001) Early Proterozoic calc-alkaline and middle Proterozoic tholeiitic dykes swarms from central-eastern Argentina: petrology, geochemistry, Sr–Nd isotopes and tectonic implications. J Petrology 42:2109–2143CrossRefGoogle Scholar
  54. Irvine TN, Baragar WRA (1971) A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian J Earth Sci 8:523–548Google Scholar
  55. Lajoinie MF et al (2013) Zonación mineral vinculada a procesos geoquímicos en el skarn San Miguel, Sierras Septentrionales de la provincia de Buenos Aires. Rev Asoc Geol Argent 70:402–412Google Scholar
  56. Lajoinie MF et al (2014) First records of the ‘Lomagundi-Jatuli carbon isotope Event’ in Paleoproterozoic marble of the basement of the Sierras Septentrionales in the Buenos Aires Province, Río de la Plata craton. Rev Asoc Geol Argent 71(4):585–597Google Scholar
  57. Larin AM (2009) Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: age, geochemistry, and tectonic setting. Stratigr Geol Correl 17:235–258CrossRefGoogle Scholar
  58. Maheshwari A et al (2010) Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay. Precambrian Res 182:274–299CrossRefGoogle Scholar
  59. Marchese HG, Di Paola EC (1975) Reinterpretación estratigráfica de la Perforación Punta Mogotes N° 1, Provincia de Buenos Aires. Rev Asoc Geol Argent 30:17–44Google Scholar
  60. Martínez JC, Dristas JA (2006) Perfiles de alteración en la discordancia entre el Complejo Buenos Aires y la Formación La Tinta, área de Barker, Tandilia. Avances en mineralogía, meta-logenia y petrología. Congreso de Mineralogía y Metalogenia. Actas, pp 409–412Google Scholar
  61. Martínez JC, Dristas JA (2008) Mineralogía y petrología del nivel dolomítico de las Sierras de la Siempre Verde y Cuchilla de las Águilas, Sierras de Tandilia, provincia de Buenos Aires. 17° Congreso Geológico Argentino. Jujuy, ArgentinaGoogle Scholar
  62. Martínez JC et al (2010) A hydrothermal clay mineral assemblage at the Late-Proterozoic unconformity Buenos Aires Complex—La Tinta Formation: Barker area, Tandilia Ranges (Argentina). Clay Miner 45:209–224CrossRefGoogle Scholar
  63. Martínez JC et al (2013) Late-Neoproterozoic hydrothermal fluid activity in the Tandilia belt, Argentina. Rev Asoc Geol Argent 70:410–426Google Scholar
  64. Martínez JC et al (2017) Trans-Amazonian U-Th-Pb monazite ages and P-T-d exhumation paths of garnet-bearing leucogranite and migmatitic country rock of the southeastern Tandilia belt, Río de la Plata craton in Argentina. Lithos 274:328–348CrossRefGoogle Scholar
  65. Massonne HJ et al (2012) Metamorphic evolution of the Río de la Plata Craton in the Cinco Cerros area, Buenos Aires Province, Argentina. J South Am Earth Sci 38:57–70CrossRefGoogle Scholar
  66. Mazzucchelli M et al (1995) Petrology of the Proterozoic mafic dyke swarms of Uruguay and constraints on their mantle source composition. Precambrian Res 74:177–194CrossRefGoogle Scholar
  67. Miranda SA et al (2015) Fractalness of land gravity data and residual isostatic anomalies map of Argentina, Chile and western Uruguay. Geofís Int 54(4):315–322Google Scholar
  68. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355Google Scholar
  69. Oriolo S et al (2015) Structural evolution of the Sarandí del Yí Shear Zone, Uruguay: kinematics, deformation conditions and tectonic significance. Int J Earth Sci 104(7):1759–1777CrossRefGoogle Scholar
  70. Oriolo S et al (2016a) The Nico Pérez Terrane (Uruguay): from Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton. Precambrian Res 280:147–160CrossRefGoogle Scholar
  71. Oriolo S et al (2016b) Timing of deformation in the Sarandí del Yí Shear Zone, Uruguay: implications for the amalgamation of Western Gondwana during the Neoproterozoic Brasiliano–Pan-African Orogeny. Tectonics 35(3):754–771CrossRefGoogle Scholar
  72. Oyhantçabal P et al (1990) Contribución al conocimiento petrográfico, geoquímico y estructural del granito de La Paz. Resúmenes ampliados del Primer Congreso Uruguayo de Geología. MontevideoGoogle Scholar
  73. Oyhantçabal P et al (1998) The Soca intrusion: a rapakivi granite of Uruguay. J South Am Earth Sci 11(2):169–178CrossRefGoogle Scholar
  74. Oyhantçabal P et al (2003) Proterozoico del suroeste del Uruguay: nueva propuesta estratigráfica para la Formación Montevideo y el magmatismo asociado. Rev Soc Urug Geol Pub Esp 1:38–48Google Scholar
  75. Oyhantçabal P et al (2006) K–Ar geochronology of the Mosquitos Shear Zone (Piedra Alta Terrane-Río de la Plata craton-Uruguay). In: V South American symposium on isotope geology, short papers, Punta del Este, p 149Google Scholar
  76. Oyhantçabal P et al (2007) Caracterización geológica de las rocas paleoproterozoicas de la región Centro-Sur del Uruguay (Terreno Piedra Alta—Cratón del Río de la Plata). In: Actas V Congreso Uruguayo de Geología. CD-ROMGoogle Scholar
  77. Oyhantçabal P et al (2011) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signatures. Int J Earth Sci 100:201–220CrossRefGoogle Scholar
  78. Pamoukaghlian K (2012) Sedimentología y estratigrafía de la formación Piedras de Afilar, Terreno Tandilia, Uruguay. Doctoral dissertation, Facultad de Ciencias Naturales y MuseoGoogle Scholar
  79. Pamoukaghlian K et al (2006) First C and O isotopic data for the Piedras de Afilar Formation (Tandilia Terrane, Uruguay): their bearing on its correlation and age. In: Proceedings of the V South American symposium on isotope geology, short papers, Punta del Este, pp 277–283Google Scholar
  80. Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Petrol Geol 37(1):162–183.  https://doi.org/10.1016/j.tecto.2013.02.008 CrossRefGoogle Scholar
  81. Pankhurst RJ et al (2003) Antiquity and evolution of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. J South Am Earth Sci 16:5–13CrossRefGoogle Scholar
  82. Pascale A, Oyhantçabal P (2016) Geoquímica de las anfibolitas de Formación Montevideo y los ortoneises asociados. Actas VIII Congreso Uruguayo de Geología, Montevideo, 2016Google Scholar
  83. Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Miner Petrol 58:63–81Google Scholar
  84. Pecoits E et al (2008) Ediacaran in Uruguay: palaeoclimatic and palaeobiological implications. Sedimentology 55:689–719CrossRefGoogle Scholar
  85. Peri VG, Pomposiello MC, Favetto A, Barcelona H, Rossello E (2013) Magnetotelluric evidence of the tectonic boundary between the Río de La Plata Craton and the Pampean Terrane (Chaco-Pampean Plain, Argentina): the extension of the Transbrasilian Lineament. Tectonophysics 608:685–699Google Scholar
  86. Pecoits E et al (2016) U–Pb detrital zircon ages from some Neoproterozoic successions of Uruguay: provenance, stratigraphy and tectonic evolution. J South Am Earth Sci 71:108–130CrossRefGoogle Scholar
  87. Peel E, Preciozzi F (2006) Geochronologic Synthesis of the Piedra Alta Terrane, Uruguay. In: V South American Symposium on Isotope Geology, Punta del Este, Uruguay, pp. 234–237Google Scholar
  88. Poiré DG, Gaucher C (2009) Lithostratigraphy. Neoproterozoic Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C et al (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Developments in precambrian geology, vol 16, no 4.2, pp 87–101.  https://doi.org/10.1016/S0166-2635(09)01605-3
  89. Poiré DG, Spalletti LA (2005) La cubierta sedimentaria Precámbrica- Paleozoica inferior del Sis-tema de Tandilia. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y Recursos Minerales de la Provincia de Buenos Aires. 16° Congreso Geológico Argentino, La Plata, Relatorio, vol 4, pp 51–68Google Scholar
  90. Preciozzi F (1993) Petrography and geochemistry of five granitic plutons from south-central Uruguay. Contribution to knowledge of the Piedra Alta Terrane. Unpublished Ph.D. thesis, Université du Québec, 143 ppGoogle Scholar
  91. Preciozzi F et al (1985) Carta Geológica del Uruguay a escala 1:500.000, Dirección Nacional de Minería y Geología, Montevideo, 92 ppGoogle Scholar
  92. Ramos VA (1988) Late Proterozoic-Early Paleozoic of South America: a collisional history. Episodes 11:168–174Google Scholar
  93. Rapalini AE et al (2015) Paleomagnetic study on mid-Paleoproterozoic rocks from the Rio de la Plata craton: implications for Atlantica. Gondwana Res 27(4):1534–1549CrossRefGoogle Scholar
  94. Rapela C et al (1974) Un filón básico ordovícico en la Formación La Tinta, Sierra de los Barrientos Provincia de Buenos Aires. Rev Asoc Geol Argent XXIX 3:319–331Google Scholar
  95. Rapela CW et al (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth Sci Rev 83:49–82CrossRefGoogle Scholar
  96. Rapela CW et al (2011) The Río de la Plata craton and the adjoining Pan-African/Brasilian terranes: their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690CrossRefGoogle Scholar
  97. Ribot AM et al (2005) Caracterización petrográfica y cinemática de la faja milonítica Colonia-Arroyo Pavón en el sur del terreno Piedra Alta, Uruguay: zona de cizalla principal en basamento Precámbrico? Actas del XVI Congreso Geológico Argentino, La Plata. I: 457–464Google Scholar
  98. Ribot AM et al (2013) Milonitas graníticas de la Isla San Gabriel, Uruguay: cinemática de la deformación y Geocronología U–Pb. VII Congreso Uruguayo de Geología, I Simposio de Mineria y Desarrollo del Cono Sur. pp 147–153Google Scholar
  99. Ryan WBF et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014.  https://doi.org/10.1029/2008GC002332 CrossRefGoogle Scholar
  100. Santos JOS et al (2003) Duration of the Trans-Amazonian cycle and its correlation within South America based on U–Pb SHRIMP geochronology of the La Plata Craton, Uruguay. Int Geol Rev 45:27–48CrossRefGoogle Scholar
  101. Schröder S et al (2008) Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ~2.2–2.1Gyr shallow marine Lucknow formation, South Africa. Terra Nova 20:108–117CrossRefGoogle Scholar
  102. Shand HS (1943) Eruptive Rocks. John Wiley and Sons. 444 ppGoogle Scholar
  103. Teixeira W et al (1999) 40Ar–39Ar and Rb–Sr geochronology of the Uruguayan dike swarm, Río de la Plata Craton and implications for Proterozoic intraplate activity in western Gondwana. Precambrian Res 93:153–180CrossRefGoogle Scholar
  104. Teixeira W et al (2002) Calc-alkaline and tholeiitic dyke swarms of Tandilia, Río de la Plata craton, Argentina: U–Pb, Sm-Nd, Rb-Sr and 40Ar–39Ar data provide new clues for intraplate rifting shortly after Trans-Amazonian orogeny. Precambrian Res 119:329–353CrossRefGoogle Scholar
  105. Teixeira W et al (2013) U–Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic dyke swarms, and position of the Río de la Plata Craton within the Columbia supercontinent. Lithos 174:157–174CrossRefGoogle Scholar
  106. Tohver E et al (2008) New SHRIMP U–Pb and 40Ar/39Ar constraints on the crustal stabilization of southern South America, from the margin of the Río de Plata (Sierra de Ventana) craton to northern Patagonia. American Geophysical Union, Fall Meeting 2008, abstract #T23C-2052Google Scholar
  107. Tohver E et al (2012) Closure of the Clymene ocean and formation of west Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Res 21:394–405CrossRefGoogle Scholar
  108. Umpierre M, Halpern M (1971) Edades Sr-Rb del Sur de la República Oriental del Uruguay. Rev Asoc Geol Argent 26:133–151Google Scholar
  109. Zalba PE et al (1993) Precambrian and lower Paleozoic records and paleosurfaces of the Tandilia System, Buenos Aires Province, Argentina. In: Schmitt JM, Gall Q (eds) Mineralogical and geochemical records of paleoweathering. Memoire des Sciences de la Terre, vol 18, pp 93–113Google Scholar
  110. Zimmermann U, Spalletti LA (2009) Provenance of the lower Paleozoic Balcarce formation (Tandilia system, Buenos Aires province, Argentina): implications for paleogeographic reconstructions of SW Gondwana. Sediment Geol 219:7–23CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pedro Oyhantçabal
    • 1
    Email author
  • Carlos A. Cingolani
    • 2
  • Klaus Wemmer
    • 3
  • Siegfried Siegesmund
    • 3
  1. 1.Departamento de Geodinámica Interna, Facultad de CienciasUniversidad de La RepúblicaMontevideoUruguay
  2. 2.Centro de Investigaciones Geológicas (UNLP-CONICET) and División Geología del Museo de La PlataLa PlataArgentina
  3. 3.Geoscience CentreGeorg-August University GöttingenGöttingenGermany

Personalised recommendations