Semiconductor-Based Photocatalytic Systems for the Solar-Light-Driven Water Splitting and Hydrogen Evolution

  • Oleksandr StroyukEmail author
Part of the Lecture Notes in Chemistry book series (LNC, volume 99)


The research and development of new technologies for the conversion and storage of inexhaustible solar light energy were boosted several decades ago by the 1970th fuel crisis and a strategic need for sustainable power sources that can serve as alternatives to the fossil fuels. The basic idea was to accumulate the solar light energy as the electricity as well as to store it in the form of highly endothermic and eco-friendly fuels, in particular, molecular hydrogen produced by the photochemical splitting of water.


  1. 1.
    Calvert JG, Pitts, JN Jr (1966) Photochemistry. Wiley, New-York, London, SydneyGoogle Scholar
  2. 2.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861. doi: 10.1021/jp070911w CrossRefGoogle Scholar
  3. 3.
    van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320. doi: 10.1039/B718969A CrossRefGoogle Scholar
  4. 4.
    Babu VJ, Vempati S, Uyar T, Ramakrishna S (2015) Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys Chem Chem Phys 17:2960–2986. doi: 10.1039/c4cp04245j CrossRefGoogle Scholar
  5. 5.
    Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473. doi: 10.1021/cr1002326 CrossRefGoogle Scholar
  6. 6.
    Kitano M, Hara M (2010) Heterogeneous photocatalytic cleavage of water. J Mater Chem 20:627–641. doi: 10.1039/B910180B CrossRefGoogle Scholar
  7. 7.
    Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661. doi: 10.1021/jz1007966 CrossRefGoogle Scholar
  8. 8.
    Jing D, Guo L, Zhao L et al (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Inter J Hydrogen En 35:7087–7097. doi: 10.1016/j.ijhydene.2010.01.030 CrossRefGoogle Scholar
  9. 9.
    Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol, C 12:237–268. doi: 10.1016/j.jphotochemrev.2011.07.001 CrossRefGoogle Scholar
  10. 10.
    Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209. doi: 10.1016/j.jphotochemrev.2011.02.003 CrossRefGoogle Scholar
  11. 11.
    Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257:1957–1969. doi: 10.1016/j.ccr.2013.01.021 CrossRefGoogle Scholar
  12. 12.
    Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. En Environ Sci 5:6012–6021. doi: 10.1039/C2EE03250C CrossRefGoogle Scholar
  13. 13.
    Warren SC, Thimsen E (2012) Plasmonic solar water splitting. En Environ Sci 5:5133–5146. doi: 10.1039/C1EE02875H CrossRefGoogle Scholar
  14. 14.
    Valdes A, Brillet J, Grätzel M et al (2012) Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys 14:49–70. doi: 10.1039/C1CP23212F CrossRefGoogle Scholar
  15. 15.
    Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. En Environ Sci 5:6732–6743. doi: 10.1039/C2EE03447F CrossRefGoogle Scholar
  16. 16.
    Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825. doi: 10.1039/C2CP40823F CrossRefGoogle Scholar
  17. 17.
    Horiuchi Y, Toyao T, Takeuchi M et al (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion—from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15:13243–13253. doi: 10.1039/C3CP51427G CrossRefGoogle Scholar
  18. 18.
    Prevot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893. doi: 10.1021/jp405291g CrossRefGoogle Scholar
  19. 19.
    Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690. doi: 10.1039/C3CY00018D CrossRefGoogle Scholar
  20. 20.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320. doi: 10.1039/C2CS35266D CrossRefGoogle Scholar
  21. 21.
    Fresno F, Portela R, Suarez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2:2863–2884. doi: 10.1039/C3TA13793G CrossRefGoogle Scholar
  22. 22.
    Zhang P, Zhang J, Gong J (2014) Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 43:4395–4422. doi: 10.1039/C3CS60438A CrossRefGoogle Scholar
  23. 23.
    Ran J, Zhang J, Yu J et al (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812. doi: 10.1039/C3CS60425J CrossRefGoogle Scholar
  24. 24.
    Huang ZF, Pan L, Zou JJ et al (2014) Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale 6:14044–14063. doi: 10.1039/C4NR05245E CrossRefGoogle Scholar
  25. 25.
    Ida S, Ishihara T (2014) Recent progress in two-dimensional oxide photocatalysts for water splitting. J Phys Chem Lett 5:2533–2542. doi: 10.1021/jz5010957 CrossRefGoogle Scholar
  26. 26.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. doi: 10.1039/C3CS60378D CrossRefGoogle Scholar
  27. 27.
    Vaneski A, Schneider J, Susha AS, Rogach AL (2014) Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J Photochem Photobiol C 19:52–61. doi: 10.1016/j.jphotochemrev.2013.12.001 CrossRefGoogle Scholar
  28. 28.
    Zong X, Wang L (2014) Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. J Photochem Photobiol C 18:32–49. doi: 10.1016/j.jphotochemrev.2013.10.001 CrossRefGoogle Scholar
  29. 29.
    Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44:1861–1885. doi: 10.1039/C4CS00330F CrossRefGoogle Scholar
  30. 30.
    Moniz SJA, Shevlin SA, Martin DJ et al (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. En Environ Sci 8:731–759. doi: 10.1039/C4EE03271C CrossRefGoogle Scholar
  31. 31.
    Wang M, Han K, Zhang S, Sun L (2015) Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord Chem Rev 287:1–14. doi: 10.1016/j.ccr.2014.12.005 CrossRefGoogle Scholar
  32. 32.
    Gholipour MR, Dinh CT, Beland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7:8187–8208. doi: 10.1039/C4NR07224C CrossRefGoogle Scholar
  33. 33.
    Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518. doi: 10.1038/nphoton.2012.175 CrossRefGoogle Scholar
  34. 34.
    Zhou N, Lopez-Puente V, Wang Q et al (2015) Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv 5:29076–29097. doi: 10.1039/C5RA01819F CrossRefGoogle Scholar
  35. 35.
    Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61. doi: 10.1039/B718939G CrossRefGoogle Scholar
  36. 36.
    Szacilowski K, Macyk W, Drzewecka-Matuszek A et al (2005) Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 105:2647–2694. doi: 10.1021/cr030707e CrossRefGoogle Scholar
  37. 37.
    Allakhverdiev SI, Kreslavski VD, Thavasi V et al (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156. doi: 10.1039/B814932A CrossRefGoogle Scholar
  38. 38.
    Zhang X, Peng T, Song S (2016) Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A 4:2365–2402. doi: 10.1039/c5ta08939e CrossRefGoogle Scholar
  39. 39.
    Nada AA, Hamed HA, Barakat MH et al (2008) Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+. Inter J Hydrogen En 33:3264–3269. doi: 10.1016/j.ijhydene.2008.04.027 CrossRefGoogle Scholar
  40. 40.
    Jin Z, Zhang X, Lu G, Li S (2006) Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2–Investigation of different noble metal loading. J Mol Catal A 259:275–280. doi: 10.1016/j.molcata.2006.06.035 CrossRefGoogle Scholar
  41. 41.
    Tiwari A, Mondal I, Pal U (2015) Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO2 photocatalyst in neutral water. RSC Adv 5:31415–31421. doi: 10.1039/C5RA03039K CrossRefGoogle Scholar
  42. 42.
    Lee J, Kwak J, Ko KC et al (2012) Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem Commun 48:11431–11433. doi: 10.1039/C2CC36501D CrossRefGoogle Scholar
  43. 43.
    Tiwari A, Pal U (2015) Effect of donor-donor-π-acceptor architecture of triphenylamine-based organic sensitizers over TiO2 photocatalysts for visible-light-driven hydrogen production. Inter J Hydrogen En 40:9069–9079. doi: 10.1016/j.ijhydene.2015.05.101 CrossRefGoogle Scholar
  44. 44.
    Chen S, Li Y, Wang C (2015) Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. RSC Adv 5:15880–15885. doi: 10.1016/j.apcata.2015.03.026 CrossRefGoogle Scholar
  45. 45.
    Zhang J, Du P, Schneider J et al (2007) Photogeneration of hydrogen from water using an integrated system based on TiO2 and platinum(II) diimine dithiolate sensitizers. J Am Chem Soc 129:7726–7727. doi: 10.1021/ja071789h CrossRefGoogle Scholar
  46. 46.
    Astuti Y, Palomares E, Haque SA, Durrant JR (2005) Triplet state photosensitization of nanocrystalline metal oxide electrodes by zinc-substituted cytochrome c: application to hydrogen evolution. J Am Chem Soc 127:15120–15126. doi: 10.1021/ja0533444 CrossRefGoogle Scholar
  47. 47.
    Bala S, Mondal I, Goswami A et al (2014) Synthesis, crystal structure and optical properties of a naphthylbisimide-Ni complex: a framework on TiO2 for visible light H2 production. Dalton Trans 43:15704–15707. doi: 10.1039/C4DT02006E CrossRefGoogle Scholar
  48. 48.
    Li Q, Jin Z, Peng Z et al (2007) High-efficient photocatalytic hydrogen evolution on Eosin Y-sensitized Ti − MCM41 zeolite under visible-light irradiation. J Phys Chem C 111:8237–8241. doi: 10.1021/jp068703b CrossRefGoogle Scholar
  49. 49.
    Li Q, Lu G (2007) Visible-light driven photocatalytic hydrogen generation on Eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. J Mol Catal A 266:75–79. doi: 10.1016/j.molcata.2006.10.047 CrossRefGoogle Scholar
  50. 50.
    Li Y, Xie C, Peng S et al (2008) Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J Mol Catal A 282:117–123. doi: 10.1016/j.molcata.2007.12.005 CrossRefGoogle Scholar
  51. 51.
    Abe R, Sayama K, Arakawa H (2004) Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I solution under visible light irradiation. J Photochem Photobiol A 166:115–122. doi: 10.1016/j.jphotochem.2004.04.031 CrossRefGoogle Scholar
  52. 52.
    Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T (2010) Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. Inter J Hydrogen En 35:12428–12442. doi: 10.1016/j.ijhydene.2010.08.138 CrossRefGoogle Scholar
  53. 53.
    Zhang N, Shi J, Niu F et al (2015) A cocatalyst-free Eosin Y-sensitized p-type of Co3O4 quantum dot for highly efficient and stable visible-light-driven water reduction and hydrogen production. Phys Chem Chem Phys 17:21397–21400. doi: 10.1039/c5cp02983j CrossRefGoogle Scholar
  54. 54.
    Ikeda S, Abe C, Torimoto T, Ohtani B (2003) Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. J Photochem Photobiol A 160:61–67. doi: 10.1016/S1010-6030(03)00222-3 CrossRefGoogle Scholar
  55. 55.
    Fu N, Lu G (2009) Hydrogen evolution over heteropoly blue-sensitized Pt/TiO2 under visible light irradiation. Catal Lett 127:319–322. doi: 10.1007/s10562-008-9681-4 CrossRefGoogle Scholar
  56. 56.
    Fu N, Lu G (2009) Photo-catalytic H2 evolution over a series of Keggin-structure heteropoly blue sensitized Pt/TiO2 under visible light irradiation. Appl Surf Sci 255:4378–4383. doi: 10.1016/j.apsusc.2008.11.056 CrossRefGoogle Scholar
  57. 57.
    Kuchmiy SY, Korzhak AV, Guba NF et al (1995) Sensitization of cadmium sulfide by cyanine dyes in the photocatalytic production of hydrogen. Theoret Experim Chem 31:370–374. doi: 10.1007/BF00531245 Google Scholar
  58. 58.
    Xu J, Li Y, Peng S et al (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15:7657–7665. doi: 10.1039/C3CP44687E CrossRefGoogle Scholar
  59. 59.
    Wang Y, Hong J, Zhang W, Xu R (2013) Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal Sci Technol 3:1703–1711. doi: 10.1039/C3CY20836B CrossRefGoogle Scholar
  60. 60.
    Xu J, Li Y, Peng S (2015) Photocatalytic hydrogen evolution over erythrosin B-sensitized graphitic carbon nitride with in situ grown molybdenum sulfide cocatalyst. Inter J Hydrogen En 40:353–362. doi: 10.1016/j.ijhydene.2014.10.150 CrossRefGoogle Scholar
  61. 61.
    Takanabe K, Kamata K, Wang X et al (2010) Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys 12:13020–13025. doi: 10.1039/C0CP00611D CrossRefGoogle Scholar
  62. 62.
    Song S, Guo Y, Peng T et al (2016) Effects of the symmetry and carboxyl anchoring group of zinc phthalocyanine derivatives on g-C3N4 for photosensitized H2 production. RSC Adv 6:77366–77374. doi: 10.1039/c6ra15890k CrossRefGoogle Scholar
  63. 63.
    Reisner E, Fontecilla-Camps JC, Armstrong FA (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem Commun 550–552. doi: 10.1039/B817371K
  64. 64.
    Peng T, Ke D, Cai P et al (2008) Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. J Power Sources 180:498–505. doi: 10.1016/j.jpowsour.2008.02.002 CrossRefGoogle Scholar
  65. 65.
    Lakshminarasimhan N, Bae E, Choi W (2007) Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: role of interparticle charge transfer. J Phys Chem C 111:15244–15250. doi: 10.1021/jp0752724 CrossRefGoogle Scholar
  66. 66.
    Li J, E Y, Lian L, Ma W (2013) Visible light induced dye-sensitized photocatalytic hydrogen production over platinized TiO2 derived from decomposition of platinum complex precursor. Inter J Hydrogen En 38:10746–10753. doi: 10.1016/j.ijhydene.2013.02.121
  67. 67.
    Maeda K, Eguchi M, Youngblood WJ, Mallouk TE (2008) Niobium oxide nanoscrolls as building blocks for dye-sensitized hydrogen production from water under visible light irradiation. Chem Mater 20:6770–6778. doi: 10.1021/cm801807b CrossRefGoogle Scholar
  68. 68.
    Maeda K, Eguchi M, Lee SH et al (2009) Photocatalytic hydrogen evolution from hexaniobate nanoscrolls and calcium niobate nanosheets sensitized by ruthenium(II) bipyridyl complexes. J Phys Chem C 113:7962–7969. doi: 10.1021/jp900842e CrossRefGoogle Scholar
  69. 69.
    Peng T, Dai K, Yi H et al (2008) Photosensitization of different ruthenium(II) complex dyes on TiO2 for photocatalytic H2 evolution under visible-light. Chem Phys Lett 460:216–219. doi: 10.1016/j.cplett.2008.06.001 CrossRefGoogle Scholar
  70. 70.
    Ueno K, Misawa H (2013) Surface plasmon-enhanced photochemical reactions. J Photochem Photobiol C 15:31–52. doi: 10.1016/j.jphotochemrev.2013.04.001 CrossRefGoogle Scholar
  71. 71.
    Valenti M, Jonsson MP, Biskos G et al (2016) Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J Mater Chem A 4:17891–17912. doi: 10.1039/c6ta06405a CrossRefGoogle Scholar
  72. 72.
    Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103. doi: 10.1038/NPHOTON.2013.238 CrossRefGoogle Scholar
  73. 73.
    Nguyen BH, Nguyen VH (2015) Recent advances in research on plasmonic enhancement of photocatalysis. Adv Nat Sci Nanosci Nanotechnol 6:043001. doi: 10.1088/2043-6262/6/4/043001 CrossRefGoogle Scholar
  74. 74.
    Mendez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J Phys Chem C 120:25010–25022. doi: 10.1021/acs.jpcc.6b06854 CrossRefGoogle Scholar
  75. 75.
    Fang J, Cao SW, Wang Z et al (2012) Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Inter J Hydrogen En 37:17853–17861. doi: 10.1016/j.ijhydene.2012.09.023 CrossRefGoogle Scholar
  76. 76.
    Zhang X, Liu Y, Kang Z (2014) 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:4480–4489. doi: 10.1021/am500234v CrossRefGoogle Scholar
  77. 77.
    DeSario PA, Pietron JJ, DeVantier DE et al (2013) Plasmonic enhancement of visible-light water splitting with Au–TiO2 composite aerogels. Nanoscale 5:8073–8083. doi: 10.1039/c3nr01429k CrossRefGoogle Scholar
  78. 78.
    Ingram DB, Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133:5202–5205. doi: 10.1021/ja200086g CrossRefGoogle Scholar
  79. 79.
    Meng F, Cushing SK, Li J et al (2015) Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal 5:1949–1955. doi: 10.1021/cs5016194 CrossRefGoogle Scholar
  80. 80.
    Hou W, Cronin SB (2012) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619. doi: 10.1002/adfm.201202148 CrossRefGoogle Scholar
  81. 81.
    Wu B, Liu D, Mubeen S et al (2016) Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J Am Chem Soc 138:1114–1117. doi: 10.1021/jacs.5b11341 CrossRefGoogle Scholar
  82. 82.
    Chen JJ, Wu JCS, Wu PC, Tsai DP (2011) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115:210–216. doi: 10.1021/jp1074048 CrossRefGoogle Scholar
  83. 83.
    Mubeen S, Hernandez-Sosa G, Moses D et al (2011) Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11:5548–5552. doi: 10.1021/nl203457v CrossRefGoogle Scholar
  84. 84.
    Priebe JB, Radnik J, Lennox AJJ et al (2015) Solar hydrogen production by plasmonic Au − TiO2 catalysts: impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal 5:2137–2148. doi: 10.1021/cs5018375 CrossRefGoogle Scholar
  85. 85.
    Zhan Z, An J, Zhang H et al (2014) Three-dimensional plasmonic photoanodes based on Au-Embedded TiO2 structures for enhanced visible-light water splitting. ACS App Mater Interfaces 6:1139–1144. doi: 10.1021/am404738a CrossRefGoogle Scholar
  86. 86.
    Zhang Z, Zhang L, Hedhili MN et al (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20. doi: 10.1021/nl3029202 CrossRefGoogle Scholar
  87. 87.
    Chen C, Kuai L, Chen Y et al (2015) Au/Pt co-loaded ultrathin TiO2 nanosheets for photocatalyzed H2 evolution by the synergistic effect of plasmonic enhancement and co-catalysis. RSC Adv 5:98254–98259. doi: 10.1039/c5ra17732d CrossRefGoogle Scholar
  88. 88.
    Yu G, Wang X, Cao J et al (2016) Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution. Chem Commun 52:2394–2397. doi: 10.1039/c5cc10066f CrossRefGoogle Scholar
  89. 89.
    Luo Y, Liu X, Tang X et al (2014) Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J Mater Chem A 2:14927–14939. doi: 10.1039/c4ta02991g CrossRefGoogle Scholar
  90. 90.
    Wu M, Chen WJ, Shen YH et al (2014) In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl Nater Interfaces 6:15052–15060. doi: 10.1021/am503044f CrossRefGoogle Scholar
  91. 91.
    Zeng J, Song T, Lv M et al (2016) Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution. RSC Adv 6:54964–54975. doi: 10.1039/c6ra08356k CrossRefGoogle Scholar
  92. 92.
    Patnaik S, Martha S, Madras G, Parida K (2016) The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys Chem Chem Phys 18:28502–28514. doi: 10.1039/c6cp04262g CrossRefGoogle Scholar
  93. 93.
    Zhang X, Zhao J, Wang S et al (2014) Shape-dependent localized surface plasmon enhanced photocatalytic effect of ZnO nanorods decorated with Ag. Inter J Hydrogen En 39:8238–8245. doi: 10.1016/j.ijhydene.2014.03.153 CrossRefGoogle Scholar
  94. 94.
    Yi J, She X, Song Y et al (2016) A silver on 2D white-C3N4 support photocatalyst for mechanistic insights: synergetic utilization of plasmonic effect for solar hydrogen evolution. RSC Adv 6:112420–112428. doi: 10.1039/c6ra23964a CrossRefGoogle Scholar
  95. 95.
    Kryukov AI, Kuchmiy SY, Korzhak AV et al (1993) Synergism in an organized photocatalytic system based on cadmium sulfide and titanium complexes. Theoret Exp Chem 29:312–316. doi: 10.1007/BF00532100 Google Scholar
  96. 96.
    Kryukov AI, Kuchmiy SY, Kulik SV et al (1994) New photocatalysts: dispersed semiconductor materials with microheterojunctions. Theoret Exp Chem 30:182–186. doi: 10.1007/BF00531180 CrossRefGoogle Scholar
  97. 97.
    Kryukov AI, Kuchmiy SY, Pokhodenko VD (1994) Molecular design in photo-catalysis: physicochemical principles for designing high-efficiency photocatalytic oxidation-reduction systems. Theoret Exp Chem 30:141–157. doi: 10.1007/BF00534653 CrossRefGoogle Scholar
  98. 98.
    Kryukov A, Kuchmiy SY, Pokhodenko VD (1997) Nanostructural composite photocatalysts based on polycrystalline cadmium sulfide. Theoret Exp Chem 33:306–321. doi: 10.1007/BF02522707 Google Scholar
  99. 99.
    Kryukov AI, Kuchmiy SY, Pokhodenko VD (2000) Energetics of electron processes in semiconductor photocatalytic systems. Theoret Exp Chem 36:69–89. doi: 10.1007/BF02529022 CrossRefGoogle Scholar
  100. 100.
    Fedoseev BI, Savinov EI, Parmon VN (1987) Photocatalytic hydrogen evolution from Na2S solution in the presence of highly disperse cadmium and copper sulfides. Kinetics Catal 28:1111–1115Google Scholar
  101. 101.
    Ogisu K, Takanabe K, Lu D et al (2009) CdS nanoparticles exhibiting quantum size effect by dispersion on TiO2: photocatalytic H2 evolution and photoelectrochemical measurements. Bull Chem Soc Jpn 82:528–535. doi: 10.1246/bcsj.82.528 CrossRefGoogle Scholar
  102. 102.
    Hirai T, Suzuki K, Komasawa I (2001) Preparation and photocatalytic properties of composite cds nanoparticles-titanium dioxide particles. J Colloid Interface Sci 244:262–265. doi: 10.1006/jcis.2001.7982 CrossRefGoogle Scholar
  103. 103.
    Stroyuk OL, Kryukov AI, Kuchmiy SY, Pokhodenko VD (2005) Quantum size effects in the photonics of semiconductor nanoparticles. Theoret Exp Chem 41:67–91. doi: 10.1007/s11237-005-0025-9 CrossRefGoogle Scholar
  104. 104.
    Stroyuk OL, Kryukov AI, Kuchmiy SY, Pokhodenko VD (2005) Quantum size effects in semiconductor photocatalysis. Theoret Exp Chem 41:207–228. doi: 10.1007/s11237-005-0042-8 CrossRefGoogle Scholar
  105. 105.
    Lian Z, Xu P, Wang W et al (2015) C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 7:4533–4540. doi: 10.1021/am5088665 CrossRefGoogle Scholar
  106. 106.
    Ji SM, Jun H, Jang JS et al (2007) Photocatalytic hydrogen production from natural seawater. J Photochem Photobiol A 189:141–144. doi: 10.1016/j.jphotochem.2007.01.011 CrossRefGoogle Scholar
  107. 107.
    Park H, Choi W, Hoffmann MR (2008) Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J Mater Chem 18:2379–2385. doi: 10.1039/B718759A CrossRefGoogle Scholar
  108. 108.
    Jang JS, Choi SH, Kim HG, Lee JS (2008) Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light. J Phys Chem C 112:17200–17205. doi: 10.1021/jp804699c CrossRefGoogle Scholar
  109. 109.
    Cui X, Jiang G, Zhu M et al (2013) TiO2/CdS composite hollow spheres with controlled synthesis of platinum on the internal wall for the efficient hydrogen evolution. Inter J Hydrogen En 38:9065–9073. doi: 10.1016/j.ijhydene.2013.05.062 CrossRefGoogle Scholar
  110. 110.
    Zhou H, Pan J, Ding L et al (2014) Biomass-derived hierarchical porous CdS/M/TiO2 (M = Au, Ag, pt, pd) ternary heterojunctions for photocatalytic hydrogen evolution Inter J Hydrogen En 39:16293–16301. doi: 10.1016/j.ijhydene.2014.08.032
  111. 111.
    Cui X, Wang Y, Jiang G et al (2014) A photonic crystal-based CdS–Au–WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution. RSC Adv 4:15689–15694. doi: 10.1039/C4RA01415D CrossRefGoogle Scholar
  112. 112.
    Vaishnav JK, Arbuj SS, Rane SB, Amalnerkar DP (2014) One dimensional CdS/ZnO nanocomposites: an efficient photocatalyst for hydrogen generation. RSC Adv 4:47637–47642. doi: 10.1039/C4RA08561B CrossRefGoogle Scholar
  113. 113.
    Yang G, Yan W, Zhang Q et al (2013) One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 5:12432–12439. doi: 10.1039/C3NR03462C CrossRefGoogle Scholar
  114. 114.
    Shen S, Guo L (2008) Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst. Mater Res Bull 43:437–446. doi: 10.1016/j.materresbull.2007.02.034 CrossRefGoogle Scholar
  115. 115.
    Liu Z, Shen S, Guo L (2012) Study on photocatalytic performance for hydrogen evolution over CdS/M-MCM-41 (M = Zr, Ti) composite photocatalysts under visible light illumination. Inter J Hydrogen En 37:816–821. doi: 10.1016/j.ijhydene.2011.04.052 CrossRefGoogle Scholar
  116. 116.
    Zhang YJ, Yan W, Wu YP, Wang ZH (2008) Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Mater Lett 62(2008):3846–3848. doi: 10.1016/j.matlet.2008.04.084 CrossRefGoogle Scholar
  117. 117.
    Xing C, Jing D, Liu M, Guo L (2009) Photocatalytic hydrogen production over Na2Ti2O4(OH)2 nanotube sensitized by CdS nanoparticles. Mater Res Bull 44:442–445. doi: 10.1016/j.materresbull.2008.04.016 CrossRefGoogle Scholar
  118. 118.
    Kim JC, Choi J, Lee YB et al (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun 48(2006):5024–5026. doi: 10.1039/B612572G CrossRefGoogle Scholar
  119. 119.
    Chen Y, Guo L (2012) Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals. J Mater Chem 22:7507–7514. doi: 10.1039/C2JM16797B CrossRefGoogle Scholar
  120. 120.
    Qi L, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys 13:8915–8923. doi: 10.1039/C1CP20079H CrossRefGoogle Scholar
  121. 121.
    Gao B, Yuan X, Lu P et al (2015) Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets. J Phys Chem Sol 87:171–176. doi: 10.1016/j.jpcs.2015.08.018 CrossRefGoogle Scholar
  122. 122.
    Guan G, Kida T, Kusakabe K et al (2005) Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10. Appl Catal A 295:71–78. doi: 10.1016/j.apcata.2005.08.010 CrossRefGoogle Scholar
  123. 123.
    Shangguan W, Yoshida A (2001) Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Sol En Mater Sol Cells 69:189–194. doi: 10.1016/S0927-0248(01)00020-4 CrossRefGoogle Scholar
  124. 124.
    Shangguan W, Yoshida A (2002) Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J Phys Chem B 106:12227–12230. doi: 10.1021/jp0212500 CrossRefGoogle Scholar
  125. 125.
    Dinh CT, Pham NH, Kleitz F, Do TO (2013) Design of water-soluble CdS–titanate–nickel nanocomposites for photocatalytic hydrogen production under sunlight. J Mater Chem A 1:13308–13313. doi: 10.1039/C3TA12914D CrossRefGoogle Scholar
  126. 126.
    Xiao J, Peng T, Ke D et al (2007) Synthesis, characterization of CdS/rectorite nanocomposites and its photocatalytic activity. Phys Chem Miner 34:275–285. doi: 10.1007/s00269-007-0146-x CrossRefGoogle Scholar
  127. 127.
    Parayil SK, Baltrusaitis J, Wu CM, Koodali RT (2013) Synthesis and characterization of ligand stabilized CdS-Trititanate composite materials for visible light-induced photocatalytic water splitting. Inter J Hydrogen En 38:2656–2669. doi: 10.1016/j.ijhydene.2012.12.042 CrossRefGoogle Scholar
  128. 128.
    Ryu SY, Choi J, Balcerski W et al (2007) Photocatalytic production of H2 on nanocomposite catalysts. Ind Eng Chem Res 46:7476–7488. doi: 10.1021/ie0703033 CrossRefGoogle Scholar
  129. 129.
    Shangguan W (2007) Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Technol Adv Mater 8:76–81. doi: 10.1016/j.stam.2006.09.007 CrossRefGoogle Scholar
  130. 130.
    Choi J, Ryu Y, Balcerski W et al (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371–2378. doi: 10.1039/B718535A CrossRefGoogle Scholar
  131. 131.
    Chen W, Gao H, Yuan J et al (2013) Structure characteristics of CdS/H1.9K0.3La0.5Bi0.1Ta2O7 and photocatalytic activity for hydrogen evolution under visible light. Inter J Hydrogen En 38:10754–10760. doi: 10.1016/j.ijhydene.2013.02.067 CrossRefGoogle Scholar
  132. 132.
    Yu J, Lei SL, Chen TC et al (2014) A new CdS/Bi1−xInxTaO4 heterostructured photocatalyst containing solid solutions for H2 evolution from water splitting. Inter J Hydrogen En 39:13105–13113. doi: 10.1016/j.ijhydene.2014.06.148 CrossRefGoogle Scholar
  133. 133.
    Zhang G, Lin B, Yang W et al (2015) Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Adv 5:5823–5829. doi: 10.1039/C4RA11757C CrossRefGoogle Scholar
  134. 134.
    Wu J, Lin J, Yin S, Sato T (2001) Synthesis and photocatalytic properties of layered HNbWO6/(Pt, Cd0.8Zn0.2S) nanocomposites. J Mater Chem 11:3343–3347. doi: 10.1039/B103838A CrossRefGoogle Scholar
  135. 135.
    So WW, Kim KJ, Moon SJ (2004) Photo-production of hydrogen over the CdS–TiO2 nanocomposite particulate films treated with TiCl4. Inter J Hydrogen En 29:229–234. doi: 10.1016/S0360-3199(03)00211-8 CrossRefGoogle Scholar
  136. 136.
    Wang H, Zhu W, Chong B, Qin K (2014) Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure. Inter J Hydrogen En 39:90–99. doi: 10.1016/j.ijhydene.2013.10.048 CrossRefGoogle Scholar
  137. 137.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. doi: 10.1039/B800489G CrossRefGoogle Scholar
  138. 138.
    Moon GD, Joo JB, Lee I, Yin Y (2014) Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production. Nanoscale 6:12002–12008. doi: 10.1039/C4NR03521F CrossRefGoogle Scholar
  139. 139.
    Jang JS, Ji SM, Bae SW et al (2007) Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ ≥ 420 nm). J Photochem Photobiol, A 188:112–119. doi: 10.1016/j.jphotochem.2006.11.027 CrossRefGoogle Scholar
  140. 140.
    Jang JS, Kim HG, Borse PH, Lee JS (2007) Simultaneous hydrogen production and decomposition of H2S dissolved in alkaline water over CdS–TiO2 composite photocatalysts under visible light irradiation. Inter J Hydrogen En 32:4786–4791. doi: 10.1016/j.ijhydene.2007.06.026 CrossRefGoogle Scholar
  141. 141.
    Jang JS, Kim HG, Joshi UA et al (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Inter J Hydrogen En 33:5975–5980. doi: 10.1016/j.ijhydene.2008.07.105 CrossRefGoogle Scholar
  142. 142.
    Li C, Xi Z, Fang W et al (2015) Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation. J Sol State Chem 226:94–100. doi: 10.1016/j.jssc.2015.02.011 CrossRefGoogle Scholar
  143. 143.
    Guo K, Liu Z, Han J et al (2014) Hierarchical TiO2–CuInS2 core–shell nanoarrays for photoelectrochemical water splitting. Phys Chem Chem Phys 16:16204–16213. doi: 10.1039/C4CP01971G CrossRefGoogle Scholar
  144. 144.
    Li K, Xu J, Zhang X et al (2013) Low-temperature preparation of AgIn5S8/TiO2 heterojunction nanocomposite with efficient visible-light-driven hydrogen production. Inter J Hydrogen En 38:15965–15975. doi: 10.1016/j.ijhydene.2013.09.147 CrossRefGoogle Scholar
  145. 145.
    Cheng Z, Zhan X, Wang F et al (2015) Construction of CuInS2/Ag sensitized ZnO nanowire arrays for efficient hydrogen generation. RSC Adv 5:81723–81727. doi: 10.1039/c5ra14188e CrossRefGoogle Scholar
  146. 146.
    Choi Y, Baek M, Zhang Z et al (2015) A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation. Nanoscale 7:15291–15299. doi: 10.1039/c5nr04107d CrossRefGoogle Scholar
  147. 147.
    Kandiel TA, Takanabe K (2016) Solvent-induced deposition of Cu–Ga–In–S nanocrystals onto atitanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Appl Catal B 184:264–269. doi: 10.1016/j.apcatb.2015.11.036 CrossRefGoogle Scholar
  148. 148.
    Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) Visible light induced hydrogen evolution over the heterosystem Bi2S3/TiO2. Catal Today 122:62–65. doi: 10.1016/j.cattod.2007.01.030 CrossRefGoogle Scholar
  149. 149.
    Kim J, Kang M (2012) High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Inter J Hydrogen En 37:8249–8256. doi: 10.1016/j.ijhydene.2012.02.057 CrossRefGoogle Scholar
  150. 150.
    Senevirathna N, Pitigaka P, Tennakone K (2005) Water photoreduction with Cu2O quantum dots on TiO2 nanoparticles. J Photochem Photobiol A 171:257–259. doi: 10.1016/j.jphotochem.2004.10.018 CrossRefGoogle Scholar
  151. 151.
    Zhang S, Zhang S, Peng F et al (2011) Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochem Commun 13:861–864. doi: 10.1016/j.elecom.2011.05.022 CrossRefGoogle Scholar
  152. 152.
    Kumar DP, Reddy NL, Kumari MM et al (2015) Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol En Mater Sol Cells 136:157–166. doi: 10.1016/j.solmat.2015.01.009 CrossRefGoogle Scholar
  153. 153.
    Zhang S, Peng B, Yang S et al (2013) The influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution. Inter J Hydrogen En 38:13866–13871. doi: 10.1016/j.ijhydene.2013.08.081 CrossRefGoogle Scholar
  154. 154.
    Li L, Xu L, Shi W, Guan J (2013) Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution. Inter J Hydrogen En 38:816–822. doi: 10.1016/j.ijhydene.2012.10.064 CrossRefGoogle Scholar
  155. 155.
    Sharma D, Upadhyay S, Satsangi VR et al (2014) Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J Phys Chem C 118:25320–25329. doi: 10.1021/jp507039n CrossRefGoogle Scholar
  156. 156.
    Jung M, Scott J, Ng YH et al (2014) CuOx dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution. Inter J Hydrogen En 39:12499–12506. doi: 10.1016/j.ijhydene.2014.06.020 CrossRefGoogle Scholar
  157. 157.
    Bandara J, Udawatta C, Rajapakse C (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4:857–861. doi: 10.1039/B507816D CrossRefGoogle Scholar
  158. 158.
    Yu Z, Meng J, Li Y et al (2013) Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO2 nanocomposite photocatalyst. Inter J Hydrogen En 38:6649–16655. doi: 10.1016/j.ijhydene.2013.07.056 Google Scholar
  159. 159.
    Xu S, Du AJ, Liu J et al (2011) Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. Inter J Hydrogen En 36:6560–6568. doi: 10.1016/j.ijhydene.2011.02.103 CrossRefGoogle Scholar
  160. 160.
    Kumar SP, Shankar MV, Kumari MM et al (2013) Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation. Chem Commun 49:9443–9445. doi: 10.1039/C3CC44742A CrossRefGoogle Scholar
  161. 161.
    Yue X, Yi S, Wang R et al (2016) A novel and highly efficient earth-abundant Cu3P with TiO2 “P–N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 8:17516–17523. doi: 10.1039/c6nr06620h CrossRefGoogle Scholar
  162. 162.
    Yang X, Xu J, Wong T et al (2013) Synthesis of In2O3–In2S3 core–shell nanorods with inverted type-I structure for photocatalytic H2 generation. Phys Chem Chem Phys 15:12688–12693. doi: 10.1039/C3CP51722E CrossRefGoogle Scholar
  163. 163.
    Liu Z, Bai H, Xu S, Sun DD (2011) Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. Inter J Hydrogen En 36:13473–13480. doi: 10.1016/j.ijhydene.2011.07.137 CrossRefGoogle Scholar
  164. 164.
    Rajaambal S, Mapa M, Gopinath CS (2014) In1−xGaxN@ZnO: a rationally designed and quantum dot integrated material for water splitting and solar harvesting applications. Dalton Trans 43:12546–12554. doi: 10.1039/C4DT01268B CrossRefGoogle Scholar
  165. 165.
    Derbal A, Omeiri S, Bouguelia A, Trari M (2008) Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution. Inter J Hydrogen En 33:4274–4282. doi: 10.1016/j.ijhydene.2008.05.067 CrossRefGoogle Scholar
  166. 166.
    Nguyen-Phan TD, Luo S, Vovchok D et al (2016) Visible light-driven H2 production over highly dispersed ruthenia on rutile TiO2 nanorods. ACS Catal 6:407–417. doi: 10.1021/acscatal.5b02318 CrossRefGoogle Scholar
  167. 167.
    Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) CuAlO2/TiO2 heterojunction applied to visible light H2 production. J Photochem Photobiol A 186:242–247. doi: 10.1016/j.jphotochem.2006.08.013 CrossRefGoogle Scholar
  168. 168.
    Ou Y, Lin J, Fang S, Liao D (2006) MWNT–TiO2: Ni composite catalyst: a new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chem Phys Lett 429:199–203. doi: 10.1016/j.cplett.2006.08.024 CrossRefGoogle Scholar
  169. 169.
    Yu H, Shi R, Zhao Y et al (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28:9454–9477. doi: 10.1002/adma.201602581 CrossRefGoogle Scholar
  170. 170.
    Cao S, Yu J (2016) Carbon-based H2-production photocatalytic materials. J Photochem Photobiol C 27:72–99. doi: 10.1016/j.jphotochemrev.2016.04.002 CrossRefGoogle Scholar
  171. 171.
    Wang J, Gao M, Ho GW (2014) Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. J Mater Chem A 2(2014):5703–5709. doi: 10.1039/C3TA15114J CrossRefGoogle Scholar
  172. 172.
    Yu H, Zhao Y, Zhou C et al (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351. doi: 10.1039/C3TA14108J CrossRefGoogle Scholar
  173. 173.
    Tang Y, Hao R, Fu Y et al (2016) Carbon quantum dot/mixed crystal TiO2 composites via a hydrogenation process: an efficient photocatalyst for the hydrogen evolution reaction. RSC Adv 6:96803–96808. doi: 10.1039/c6ra17597j CrossRefGoogle Scholar
  174. 174.
    Wang J, Huang J, Xie H, Qu A (2014) Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Inter J Hydrogen En 39:6354–6363. doi: 10.1016/j.ijhydene.2014.02.020 CrossRefGoogle Scholar
  175. 175.
    Zang Y, Li L, Xu Y et al (2014) Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J Mater Chem A 2:15774–15780. doi: 10.1039/C4TA02082K CrossRefGoogle Scholar
  176. 176.
    Li Y, Wang R, Li H et al (2015) Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi. J Phys Chem C 119:20283–20292. doi: 10.1021/acs.jpcc.5b05427 CrossRefGoogle Scholar
  177. 177.
    Pany S, Parida KM (2015) A facile in situ approach to fabricate N, S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. Phys Chem Chem Phys 17:8070–8077. doi: 10.1039/C4CP05582A CrossRefGoogle Scholar
  178. 178.
    Zhong X, Jin M, Dong H et al (2014) TiO2 nanobelts with a uniform coating of g-C3N4 as a highly effective heterostructure for enhanced photocatalytic activities. J Sol State Chem 220:54–59. doi: 10.1016/j.jssc.2014.08.016 CrossRefGoogle Scholar
  179. 179.
    Jiang Y, Guo S, Hao R et al (2016) A hybridized heterojunction structure between TiO2 nanorods and exfoliated graphitic carbon nitride sheets for hydrogen evolution under visible light. CrystEngComm 18:6875–6880. doi: 10.1039/c6ce01442a CrossRefGoogle Scholar
  180. 180.
    Cheng F, Yin H, Xiang Q (2017) Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl Surf Sci 391:432–439. doi: 10.1016/j.apsusc.2016.06.169 CrossRefGoogle Scholar
  181. 181.
    Liu H, Jin Z, Xu Z et al (2015) Fabrication of ZnIn2S4–g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants. RSC Adv 5:97951–97961. doi: 10.1039/c5ra17028a CrossRefGoogle Scholar
  182. 182.
    Zheng D, Zhang G, Wang X (2015) Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl Catal B 179:479–488. doi: 10.1016/j.apcatb.2015.05.060 CrossRefGoogle Scholar
  183. 183.
    Chen W, Liu TY, Huang T et al (2015) A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Adv 5:101214–101220. doi: 10.1039/c5ra18302b CrossRefGoogle Scholar
  184. 184.
    Hu B, Cai F, Chen T et al (2015) Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation. ACS Appl Mater Interfaces 7:18247–18256. doi: 10.1021/acsami.5b05715 CrossRefGoogle Scholar
  185. 185.
    Kudo A (2007) Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Inter J Hydrogen En 32:2673–2678. doi: 10.1016/j.ijhydene.2006.09.010 CrossRefGoogle Scholar
  186. 186.
    Ni M, Leung M, Leung D, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain En Rev 11:401–425. doi: 10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  187. 187.
    Matsuoka M, Kitano M, Takeuchi M et al (2007) Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122:51–61. doi: 10.1016/j.cattod.2007.01.042 CrossRefGoogle Scholar
  188. 188.
    Lee JS (2005) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal Surv Asia 9:217–227. doi: 10.1007/s10563-005-9157-0 CrossRefGoogle Scholar
  189. 189.
    Kudo A (2003) Photocatalyst materials for water splitting. Catal Surv Asia 7:31–38. doi: 10.1023/A:1023480507710 CrossRefGoogle Scholar
  190. 190.
    Tsuji I, Kudo A (2003) H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. J Photochem Photobiol A 156:249–252. doi: 10.1016/S1010-6030(02)00433-1 CrossRefGoogle Scholar
  191. 191.
    Kudo A, Sekizawa M (2000) Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem Commun 1371–1372. doi: 10.1039/B003297M
  192. 192.
    Kudo A, Sekizawa M (1999) Photocatalytic H2 evolution under visible light irradiation on Zn1−xCuxS solid solution. Catal Lett 58:241–243. doi: 10.1023/A:1019067025917 CrossRefGoogle Scholar
  193. 193.
    Mei Z, Ouyang S, Zhang Y, Kako T (2013) Ultrafine Zn1−xCuxS (0 ≤ x ≤ 0.066) nanocrystallites for photocatalytic H2 evolution under visible light irradiation. RSC Adv 3:10654–10657. doi: 10.1039/C3RA41076E CrossRefGoogle Scholar
  194. 194.
    Wu Y, Lu G, Li S (2009) The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J Phys Chem C 113:9950–9955. doi: 10.1021/jp9009433 CrossRefGoogle Scholar
  195. 195.
    Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photochem Photobiol A 163:181–186. doi: 10.1016/S1010-6030(03)00442-8 CrossRefGoogle Scholar
  196. 196.
    Wang D, Ye J, Kako T, Kimura T (2006) Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B 110:15824–15830. doi: 10.1021/jp062487p CrossRefGoogle Scholar
  197. 197.
    Iwashina K, Kudo A (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133:13272–13275Google Scholar
  198. 198.
    Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A 1:12327–12333. doi: 10.1039/C3TA12803B CrossRefGoogle Scholar
  199. 199.
    Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245. doi: 10.1039/B502147B CrossRefGoogle Scholar
  200. 200.
    Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034. doi: 10.1021/jp0255482 CrossRefGoogle Scholar
  201. 201.
    Hwang DW, Kim HG, Lee JS et al (2005) Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (λ > 420 nm). J Phys Chem B 109:2093–2102. doi: 10.1021/jp0493226 CrossRefGoogle Scholar
  202. 202.
    Hwang DW, Kim HG, Jang JS et al (2004) Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation. Catal Today 93–95:845–850. doi: 10.1016/j.cattod.2004.06.084 CrossRefGoogle Scholar
  203. 203.
    Kanhere P, Zheng J, Chen Z (2012) Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3. Inter J Hydrogen En 37:4889–4896. doi: 10.1016/j.ijhydene.2011.12.056 CrossRefGoogle Scholar
  204. 204.
    Zou JP, Zhang LZ, Luo SL et al (2012) Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. Inter J Hydrogen En 37:17068–17077. doi: 10.1016/j.ijhydene.2012.08.133 CrossRefGoogle Scholar
  205. 205.
    Xue Y, Wang X (2015) The effects of Ag doping on crystalline structure and photocatalytic properties of BiVO4. Inter J Hydrogen En 40:5878–5888. doi: 10.1016/j.ijhydene.2015.03.028 CrossRefGoogle Scholar
  206. 206.
    Jana P, Montero CM, Pizzarro P et al (2014) Photocatalytic hydrogen production in the water/methanol system using Pt/RE:NaTaO3 (RE = Y, La, Ce, Yb) catalysts. Inter J Hydrogen En 39:5283–5290. doi: 10.1016/j.ijhydene.2013.12.182 CrossRefGoogle Scholar
  207. 207.
    Shimura K, Yoshida H (2012) Effect of doped zinc species on the photocatalytic activity of gallium oxide for hydrogen production. Phys Chem Chem Phys 14:2678–2684. doi: 10.1039/C2CP23220K CrossRefGoogle Scholar
  208. 208.
    Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339:104–110. doi: 10.1016/j.chemphys.2007.07.024 CrossRefGoogle Scholar
  209. 209.
    Zou Z, Arakawa H (2003) Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A 158:145–162. doi: 10.1016/S1010-6030(03)00029-7 CrossRefGoogle Scholar
  210. 210.
    Zou Z, Ye J, Sayama K, Arakawa H (2002) Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = M n, Fe Co, Ni and Cu) photocatalysts. J Photochem Photobiol A 148:65–69. doi: 10.1016/S1010-6030(02)00068-0 CrossRefGoogle Scholar
  211. 211.
    Wang D, Zou Z, Ye J (2005) Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem Mater 17:3255–3261. doi: 10.1021/cm0477117 CrossRefGoogle Scholar
  212. 212.
    Gurunathan K (2004) Photocatalytic hydrogen production using transition metal ions-doped γ-Bi2O3 semiconductor particles. Inter J Hydrogen En 29:933–940. doi: 10.1016/j.ijhydene.2003.04.001 CrossRefGoogle Scholar
  213. 213.
    Jing D, Zhang Y, Guo L (2005) Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett 415:74–78. doi: 10.1016/j.cplett.2005.08.080 CrossRefGoogle Scholar
  214. 214.
    Liu Q, Ding D, Ning C, Wang X (2015) Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Inter J Hydrogen En 40:2107–2114. doi: 10.1016/j.ijhydene.2014.12.064 CrossRefGoogle Scholar
  215. 215.
    Wang D, Ye J, Kitazawa H, Kimura T (2007) Photophysical and photocatalytic properties of three isostructural oxide semiconductors In6NiTi6O22, In3CrTi2O10, and In12NiCr2Ti10O42 with different 3d transition metals. J Phys Chem C 111:12848–12854. doi: 10.1021/jp0678599 CrossRefGoogle Scholar
  216. 216.
    Wang D, Zou Z, Ye J (2005) Photocatalytic H2 evolution over a new visible-light-driven photocatalyst In12NiCr2Ti10O42. Chem Phys Lett 411:285–290. doi: 10.1016/j.cplett.2005.05.124 CrossRefGoogle Scholar
  217. 217.
    Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995. doi: 10.1021/jp049556p CrossRefGoogle Scholar
  218. 218.
    Kitano M, Takeuchi M, Matsuoka M et al (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120:133–138. doi: 10.1016/j.cattod.2006.07.043 CrossRefGoogle Scholar
  219. 219.
    Fukumoto S, Kitano M, Takeuchi M et al (2009) Photocatalytic hydrogen production from aqueous solutions of alcohol as model compounds of biomass using visible light-responsive TiO2 thin films. Catal Lett 127:39–43. doi: 10.1007/s10562-008-9769-x CrossRefGoogle Scholar
  220. 220.
    Kitano M, Tsujimaru K, Anpo M (2008) Hydrogen production using highly active titanium oxide-based photocatalysts. Topics Catal 49:4–17. doi: 10.1007/s11244-008-9059-2 CrossRefGoogle Scholar
  221. 221.
    Selli E, Chiarello GL, Quartarone E et al (2007) A photocatalytic water splitting device for separate hydrogen and oxygen evolution. Chem Commun 5022–5024. doi: 10.1039/B711747G
  222. 222.
    Matsuoka M, Kitano M, Fukumoto S et al (2008) The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films. Catal Today 132:159–164. doi: 10.1016/j.cattod.2007.12.032 CrossRefGoogle Scholar
  223. 223.
    Kitano M, Takeuchi M, Matsuoka M et al (2005) Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chem Lett 34:616–617. doi: 10.1246/cl.2005.616 CrossRefGoogle Scholar
  224. 224.
    Dholam R, Patel N, Adami M, Miotello A (2008) Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Inter J Hydrogen En 33:6896–6903. doi: 10.1016/j.ijhydene.2008.08.061 CrossRefGoogle Scholar
  225. 225.
    Matsuoka M, Kitano M, Takeuchi M et al (2005) Photocatalytic water splitting on visible light-responsive TiO2 thin films prepared by a RF magnetron sputtering deposition method. Topics Catal 35:305–310. doi: 10.1007/s11244-005-3838-9 CrossRefGoogle Scholar
  226. 226.
    Wang Z, Yang C, Lin T et al (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. En Environ Sci 6:3007–3014. doi: 10.1039/c3ee41817k CrossRefGoogle Scholar
  227. 227.
    Cui H, Zhao W, Yang C et al (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2:8612–8616. doi: 10.1039/c4ta00176a CrossRefGoogle Scholar
  228. 228.
    Zhang K, Zhou W, Zhang X et al (2016) Large-scale synthesis of stable mesoporous black TiO2 nanosheets for efficient solar-driven photocatalytic hydrogen evolution via an earthabundant low-cost biotemplate. RSC Adv 6:50506–50512. doi: 10.1039/c6ra06751d CrossRefGoogle Scholar
  229. 229.
    Yuan J, Chen M, Shi J, Shanguang W (2006) Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Inter J Hydrogen En 31:1326–1331. doi: 10.1016/j.ijhydene.2005.11.016 CrossRefGoogle Scholar
  230. 230.
    Sreethawong T, Laehsalee S, Chavadej S (2009) Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catal Commun 10:538–543. doi: 10.1016/j.catcom.2008.10.029 CrossRefGoogle Scholar
  231. 231.
    Sreethawong T, Laehsalee S, Chavadej S (2008) Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. Inter J Hydrogen En 33:5947–5957. doi: 10.1016/j.ijhydene.2008.08.007 CrossRefGoogle Scholar
  232. 232.
    Liu SH, Syu HR (2013) High visible-light photocatalytic hydrogen evolution of C, N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid-template approach. Inter J Hydrogen En 38:13856–13865. doi: 10.1016/j.ijhydene.2013.08.094 CrossRefGoogle Scholar
  233. 233.
    Kim H, Monllor-Satoca D, Kim W, Choi W (2015) N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. En Environ Sci 8:247–257. doi: 10.1039/C4EE02169J CrossRefGoogle Scholar
  234. 234.
    Lin WC, Yang WD, Huang IL et al (2009) Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2−xNx catalyst. En Fuels 23:2192–2196CrossRefGoogle Scholar
  235. 235.
    Pei F, Liu Y, Xu S et al (2013) Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Inter J Hydrogen En 38:2670–2677. doi: 10.1016/j.ijhydene.2012.12.045 CrossRefGoogle Scholar
  236. 236.
    Pei F, Xu S, Zuo W et al (2014) Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite. Inter J Hydrogen En 39:6845–6852. doi: 10.1016/j.ijhydene.2014.02.173 CrossRefGoogle Scholar
  237. 237.
    Hara M, Nunoshige J, Takata T et al (2003) Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem Commun 3000–3001. doi: 10.1039/B309935K
  238. 238.
    Hara M, Hitoki G, Takata T et al (2003) TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 78:555–560. doi: 10.1016/S0920-5861(02)00354-1 CrossRefGoogle Scholar
  239. 239.
    Suzuki TM, Nakamura T, Saeki S et al (2012) Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. J Mater Chem 22:24584–24590. doi: 10.1039/C2JM33980C CrossRefGoogle Scholar
  240. 240.
    Mishima T, Matsuda M, Miyake M (2007) Visible-light photocatalytic properties and electronic structure of Zr-based oxynitride, Zr2ON2, derived from nitridation of ZrO2. Appl Catal A 324:77–82. doi: 10.1016/j.apcata.2007.03.017 CrossRefGoogle Scholar
  241. 241.
    Maeda K, Terashima H, Kase K et al (2008) Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn 81:927–937. doi: 10.1246/bcsj.81.927 CrossRefGoogle Scholar
  242. 242.
    Liu M, You W, Lei Z et al (2004) Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 2192–2193. doi: 10.1039/B407892F
  243. 243.
    Ji SM, Borse PH, Kim HG et al (2005) Photocatalytic hydrogen production from water–methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure. Phys Chem Chem Phys 7:1315–1321. doi: 10.1039/B417052K CrossRefGoogle Scholar
  244. 244.
    Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204. doi: 10.1016/j.jcat.2007.12.009 CrossRefGoogle Scholar
  245. 245.
    Maeda K, Teramura K, Lu D et al (2007) Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1−xZnx)(N1−xOx) solid solutions in photocatalytic overall water splitting. J Phys Chem C 111:7554–7560. doi: 10.1021/jp071056j
  246. 246.
    Maeda K, Teramura K, Lu D et al (2006) Characterization of Rh–Cr mixed-oxide nanoparticles dispersed on (Ga1−xZnx)(N1−xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110:13753–13758. doi: 10.1021/jp061829o CrossRefGoogle Scholar
  247. 247.
    Teramura K, Maeda K, Saito T et al (2005) Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1−xZnx)(N1−xOx) for photocatalytic overall water splitting. J Phys Chem B 109:21915–21921. doi: 10.1021/jp054313y CrossRefGoogle Scholar
  248. 248.
    Maeda K, Teramura K, Takata T et al (2005) Overall water splitting on (Ga1−xZnx)(N1−xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109:20504–20510. doi: 10.1021/jp053499y CrossRefGoogle Scholar
  249. 249.
    Lee Y, Terashima H, Shimodaira Y et al (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048. doi: 10.1021/jp0656532 CrossRefGoogle Scholar
  250. 250.
    Reyes-Gil KR, Reyes-Garcia EA, Raftery D (2007) Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J Phys Chem C 111:14579–14588. doi: 10.1021/jp072831y CrossRefGoogle Scholar
  251. 251.
    Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2−xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C 111:8677–8685. doi: 10.1021/jp071906v CrossRefGoogle Scholar
  252. 252.
    Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28. doi: 10.1021/nl051807y CrossRefGoogle Scholar
  253. 253.
    Liu Z, Pesic B, Raja KS et al (2009) Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. Inter J Hydrogen En 34:3250–3257. doi: 10.1016/j.ijhydene.2009.02.044 CrossRefGoogle Scholar
  254. 254.
    Shaban YA, Khan SU (2008) Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. Inter J Hydrogen En 33:1118–1126. doi: 10.1016/j.ijhydene.2007.11.026 CrossRefGoogle Scholar
  255. 255.
    Shaban YA, Khan SU (2009) Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations. J Sol State Electrochem 13:1025–1036. doi: 10.1007/s10008-009-0823-4 CrossRefGoogle Scholar
  256. 256.
    Randeniya LK, Murphy AB, Plumb IC (2008) A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J Mater Sci 43:1389–1399. doi: 10.1007/s10853-007-2309-z CrossRefGoogle Scholar
  257. 257.
    Ogisu K, Ishikawa A, Teramura K et al (2007) Lanthanum-indium oxysulfide as a visible light driven photocatalyst for water splitting. Chem Lett 36:854–855. doi: 10.1246/cl.2007.854 CrossRefGoogle Scholar
  258. 258.
    Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203. doi: 10.1021/jp074860e CrossRefGoogle Scholar
  259. 259.
    Hirai T, Nanba M, Komasawa I (2003) Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties. J Colloid Interface Sci 268:394–399. doi: 10.1016/j.jcis.2003.09.011 CrossRefGoogle Scholar
  260. 260.
    Khatamian M, Oskoui MS, Haghighi M (2014) Photocatalytic hydrogen generation over CdS–metalosilicate composites under visible light irradiation. New J Chem 38:1684–1693. doi: 10.1039/C3NJ01348K CrossRefGoogle Scholar
  261. 261.
    Peng R, Zhao D, Baltrusaitis J et al (2012) Visible light driven photocatalytic evolution of hydrogen from water over CdS encapsulated MCM-48 materials. RSC Adv 2:5754–5767. doi: 10.1039/C2RA20714A CrossRefGoogle Scholar
  262. 262.
    Peng R, Wu CM, Baltrusaitis J et al (2013) Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chem Commun 49:3221–3223. doi: 10.1039/C3CC41362D CrossRefGoogle Scholar
  263. 263.
    Peng R, Lin C, Baltrusaitis J et al (2014) Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Phys Chem Chem Phys 16:2048–2061. doi: 10.1039/C3CP52801D CrossRefGoogle Scholar
  264. 264.
    Henglein A, Gutierrez M (1983) Photochemistry of colloidal metal sulfides. 5. Fluorescence and chemical reactions of ZnS and ZnS/CdS co-colloids. Ber Bunsenges Phys Chem 87:852–858. doi: 10.1002/bbpc.19830871005 CrossRefGoogle Scholar
  265. 265.
    Deshpande A, Shah P, Gholap RS, Gupta NM (2009) Interfacial and physico-chemical properties of polymer-supported CdS-ZnS nanocomposites and their role in the visible-light mediated photocatalytic splitting of water. J Colloid Interface Sci 333:263–268. doi: 10.1016/j.jcis.2009.01.037 CrossRefGoogle Scholar
  266. 266.
    Lunawat PS, Senapati S, Kumar R, Gupta NM (2007) Visible light-induced splitting of water using CdS nanocrystallites immobilized over water-repellant polymeric surface. Inter J Hydrogen En 32:2784–2790. doi: 10.1016/j.ijhydene.2007.04.001 CrossRefGoogle Scholar
  267. 267.
    Kim YK, Kim M, Hwang SH et al (2015) CdS-loaded flexible carbon nanofiber mats as a platform for solar hydrogen production. Inter J Hydrogen En 40:136–145. doi: 10.1016/j.ijhydene.2014.11.011 CrossRefGoogle Scholar
  268. 268.
    Hirai T, Bando Y, Komasawa I (2002) Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties. J Phys Chem B 106:8967–8970. doi: 10.1021/jp020386v CrossRefGoogle Scholar
  269. 269.
    Hirai T, Nanba M, Komasawa I (2002) Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity. J Colloid Interface Sci 252:89–92. doi: 10.1006/jcis.2002.8430 CrossRefGoogle Scholar
  270. 270.
    Yu G, Geng L, Wu S et al (2015) Highly-efficient cocatalyst-free H2-evolution over silica-supported CdS nanoparticle photocatalysts under visible light. Chem Commun 51:10676–10679. doi: 10.1039/C5CC02249E CrossRefGoogle Scholar
  271. 271.
    Yu G, Zhang W, Sun Y et al (2016) A highly active cocatalyst-free semiconductor photocatalyst for visible-light-driven hydrogen evolution: synergistic effect of surface defects and spatial bandgap engineering. J Mater Chem A 4:13803–13808. doi: 10.1039/c6ta03803d CrossRefGoogle Scholar
  272. 272.
    Bb Kale, Baeg JO, Apte SK et al (2007) Confinement of nano CdS in designated glass: a novel functionality of quantum dot–glass nanosystems in solar hydrogen production. J Mater Chem 17:4297–4303. doi: 10.1039/B708269J CrossRefGoogle Scholar
  273. 273.
    Apte SK, Garaje SN, Valant M, Kale BB (2012) Eco-friendly solar light driven hydrogen production from copious waste H2S and organic dye degradation by stable and efficient orthorhombic CdS quantum dots–GeO2 glass photocatalyst. Green Chem 14:1455–1462. doi: 10.1039/C2GC16416G CrossRefGoogle Scholar
  274. 274.
    Kanade KG, Baeg JO, Mulik UP et al (2006) Nano-CdS by polymer-inorganic solid-state reaction: visible light pristine photocatalyst for hydrogen generation. Mater Res Bull 41:2219–2225. doi: 10.1016/j.materresbull.2006.04.031 CrossRefGoogle Scholar
  275. 275.
    Li W, O’Dowd G, Whittles TJ et al (2015) Colloidal dual-band gap cell for photocatalytic hydrogen generation. Nanoscale 7:16606–16610. doi: 10.1039/c5nr04950d CrossRefGoogle Scholar
  276. 276.
    Baldovi HG, Latorre-Sanchez M, Esteve-Adell I et al (2016) Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. J Nanopart Res 18:240–248. doi: 10.1007/s11051-016-3540-9 CrossRefGoogle Scholar
  277. 277.
    Hirai T, Nomura Y, Komasawa I (2003) Immobilization of RuS2 nanoparticles prepared in reverse micellar system onto thiol-modified polystyrene particles and their photocatalytic properties. J Nanoparticle Res 5:61–67. doi: 10.1023/A:1024422226598 CrossRefGoogle Scholar
  278. 278.
    Barawi M, Ferrer IJ, Flores E et al (2016) Hydrogen photoassisted generation by visible light and an earth abundant photocatalyst: pyrite (FeS2). J Phys Chem C 120:9547–9552. doi: 10.1021/acs.jpcc.5b11482 CrossRefGoogle Scholar
  279. 279.
    Li G, Su R, Rao J et al (2016) Band gap narrowing of SnS2 superstructures with improved hydrogen production. J Mater Chem A 4:209–216. doi: 10.1039/c5ta07283b CrossRefGoogle Scholar
  280. 280.
    Shen S, Zhao L, Guo L (2008) Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. Inter J Hydrogen En 33:4501–4510. doi: 10.1016/j.ijhydene.2008.05.043 CrossRefGoogle Scholar
  281. 281.
    Lei Z, You W, Liu M et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143. doi: 10.1039/B306813G
  282. 282.
    Guijun M, Hongjian Y, Xu Z et al (2008) Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction. Chin J Catal 29:313–315. doi: 10.1016/S1872-2067(08)60029-7 CrossRefGoogle Scholar
  283. 283.
    Shen S, Zhao L, Guo L (2009) Crystallite, optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater Res Bull 44:100–105. doi: 10.1016/j.materresbull.2008.03.027 CrossRefGoogle Scholar
  284. 284.
    Shen J, Zai J, Yuan Y, Qian X (2012) 3D hierarchical ZnIn2S4: the preparation and photocatalytic properties on water splitting. Inter J Hydrogen En 37:16986–16993. doi: 10.1016/j.ijhydene.2012.08.038 CrossRefGoogle Scholar
  285. 285.
    Fan WJ, Zhou ZF, Xu WB et al (2010) Preparation of ZnIn2S4/fluoropolymer fiber composites and its photocatalytic H2 evolution from splitting of water using Xe lamp irradiation. Inter J Hydrogen En 35:6525–6530. doi: 10.1016/j.ijhydene.2010.04.036 CrossRefGoogle Scholar
  286. 286.
    Li Y, Zhang K, Peng S et al (2012) Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation. J Mol Catal A 363–364:354–361. doi: 10.1016/j.molcata.2012.07.011 CrossRefGoogle Scholar
  287. 287.
    Chaudhari NS, Bhirud AP, Sonawane RS et al (2011) Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem 13:2500–2506. doi: 10.1039/C1GC15515F CrossRefGoogle Scholar
  288. 288.
    Li F, Luo J, Chen G et al (2014) Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H2 production by photocatalytic water splitting under visible light. Catal Sci Technol 4:1144–1150. doi: 10.1039/C3CY00952A CrossRefGoogle Scholar
  289. 289.
    Shang L, Zhou C, Bian T et al (2013) Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. J Mater Chem A 1:4552–4558. doi: 10.1039/C3TA01685D CrossRefGoogle Scholar
  290. 290.
    Xu Z, Li Y, Peng S et al (2012) NaCl-assisted low temperature synthesis of layered Zn-In-S photocatalyst with high visible-light activity for hydrogen evolution. RSC Adv 2:3458–3466. doi: 10.1039/C2RA01159J CrossRefGoogle Scholar
  291. 291.
    Chen Y, He J, Li J et al (2016) Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution. Catal Commun 87:1–5. doi: 10.1016/j.catcom.2016.08.031 CrossRefGoogle Scholar
  292. 292.
    Tian F, Zhu R, Zhong J et al (2016) An efficient preparation method of RGO/ZnIn2S4 for photocatalytic hydrogen generation under visible light. Inter J Hydrogen En 41:20156–20171. doi: 10.1016/j.ijhydene.2016.08.063 CrossRefGoogle Scholar
  293. 293.
    Shen S, Zhao L, Zhou Z, Guo L (2008) Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 112:16148–16155. doi: 10.1021/jp804525q CrossRefGoogle Scholar
  294. 294.
    Ding J, Sun S, Yan W et al (2013) Photocatalytic H2 evolution on a novel CaIn2S4 photocatalyst under visible light irradiation. Inter J Hydrogen En 38:13153–13158. doi: 10.1016/j.ijhydene.2013.07.109 CrossRefGoogle Scholar
  295. 295.
    Ding J, Li X, Chen L et al (2016) Au–Pt alloy nanoparticles site-selectively deposited on CaIn2S4 nanosteps as efficient photocatalysts for hydrogen production. J Mater Chem A 4:12630–12637. doi: 10.1039/c6ta04468a CrossRefGoogle Scholar
  296. 296.
    Zhou Q, Kang SZ, Li X et al (2015) AgGaS2 nanoplates loaded with CuS: an efficient visible photocatalyst for rapid H2 evolution. Inter J Hydrogen En 40:4119–4128. doi: 10.1016/j.ijhydene.2015.01.143 CrossRefGoogle Scholar
  297. 297.
    Iwase A, Ng YH, Amal R, Kudo A (2015) Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide. J Mater Chem A 3:8566–8570. doi: 10.1039/C5TA01237F CrossRefGoogle Scholar
  298. 298.
    Yu X, An X, Shavel A et al (2014) The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1−xGaxS2 nanocrystals. J Mater Chem A 2:12317–12322. doi: 10.1039/C4TA01315H CrossRefGoogle Scholar
  299. 299.
    Kato T, Hakari Y, Ikeda S et al (2015) Utilization of metal sulfide material of (CuGa)1−xZn2xS2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems. J Phys Chem Lett 6:1042–1047. doi: 10.1021/acs.jpclett.5b00137 CrossRefGoogle Scholar
  300. 300.
    Kandiel TA, Huttona GA, Reisner E (2016) Visible light driven hydrogen evolution with a noble metal free CuGa2In3S8 nanoparticle system in water. Catal Sci Technol 6:6536–6541. doi: 10.1039/c6cy01103a CrossRefGoogle Scholar
  301. 301.
    Quintans CS, Kato H, Kobayashi M et al (2015) Improvement of hydrogen evolution under visible light over Zn1−2x(CuGa)xGa2S4 photocatalysts by synthesis utilizing a polymerizable complex method. J Mater Chem A 3:14239–14244. doi: 10.1039/C5TA02114F
  302. 302.
    Chen F, Zai J, Xu M, Qian X (2013) 3D-hierarchical Cu3SnS4 flowerlike micro-spheres: controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J Mater Chem A 1:4316–4323. doi: 10.1039/C3TA01491F CrossRefGoogle Scholar
  303. 303.
    Kush P, Deori K, Kumar A, Deka S (2015) Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(VI) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles. J Mater Chem A 3:8098–8106. doi: 10.1039/C4TA06551D CrossRefGoogle Scholar
  304. 304.
    Yu X, Shavel A, An X et al (2014) Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 136:9236–9239. doi: 10.1021/ja502076b CrossRefGoogle Scholar
  305. 305.
    Gonce MK, Dogru M, Aslan E et al (2015) Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnSe4−xSx nanofibers. RSC Adv 5:94025–94028. doi: 10.1039/c5ra18877f CrossRefGoogle Scholar
  306. 306.
    Yu X, An X, Genç A et al (2015) Cu2ZnSnS4–PtM (M = Co, Ni) nanoheterostructures for photocatalytic hydrogen evolution. J Phys Chem C 119:21882–21888. doi: 10.1021/acs.jpcc.5b06199 CrossRefGoogle Scholar
  307. 307.
    Zhang ZX, Chong RF, Meng YN et al (2015) High temperature recrystallization of kersterite Cu2ZnSnS4 towards enhanced photocatalytic H2 evolution. Inter J Hydrogen En 40:13456–13462. doi: 10.1016/j.ijhydene.2015.08.032 CrossRefGoogle Scholar
  308. 308.
    Zheng L, Xu Y, Song Y et al (2009) Nearly monodisperse CuInS2 hierarchical micro-architectures for photocatalytic H2 evolution under visible light. Inorg Chem 48:4003–4009. doi: 10.1021/ic802399f CrossRefGoogle Scholar
  309. 309.
    Gannouni M, Assaker IB, Chtourou R (2015) Photoelectrochemical cell based on n-CuIn5S8 film as photoanodes for photocatalytic water splitting. Inter J Hydrogen En 40:7252–7259. doi: 10.1016/j.ijhydene.2015.04.057 CrossRefGoogle Scholar
  310. 310.
    Guan Z, Luo W, Feng J et al (2015) Selective etching of metastable phase induced an efficient CuIn0.7Ga0.3S2 nano-photocathode for solar water splitting. J Mater Chem A 3:7840–7848. doi: 10.1039/C5TA01259G CrossRefGoogle Scholar
  311. 311.
    Hu P, Ngaw CK, Tay YY et al (2015) A “uniform” heterogeneous photocatalyst: integrated p–n type CuInS2/NaInS2 nanosheets by partial ion exchange reaction for efficient H2 evolution. Chem Commun 51:9381–9384. doi: 10.1039/C5CC02237A CrossRefGoogle Scholar
  312. 312.
    Zhang X, Du Y, Zhou Z, Guo L (2010) A simplified method for synthesis of band-structure-controlled (CuIn)xZn2(1−x)S2 solid solution photocatalysts with high activity of photocatalytic H2 evolution under visible-light irradiation. Inter J Hydrogen En 35:3313–3321. doi: 10.1016/j.ijhydene.2010.01.111 CrossRefGoogle Scholar
  313. 313.
    Zhang X, Yang M, Zhao J, Guo L (2013) Photocatalytic hydrogen evolution with simultaneous degradation of organics over (CuIn)0.2Zn1.6S2 solid solution. Inter J Hydrogen En 38:15985–15991. doi: 10.1016/j.ijhydene.2013.10.014 CrossRefGoogle Scholar
  314. 314.
    Huang Y, Chen J, Zou W et al (2015) Enhanced photocatalytic hydrogen evolution efficiency using hollow microspheres of (CuIn)xZn2(1−x)S2 solid solutions. Dalton Trans 44:10991–10996. doi: 10.1039/C5DT01269D CrossRefGoogle Scholar
  315. 315.
    Lin y, Zhang F, Pan D (2012) A facile route to (ZnS)x(CuInS2)1−x hierarchical microspheres with excellent water-splitting ability. J Mater Chem 22:22619–22623. doi: 10.1039/C2JM35166H CrossRefGoogle Scholar
  316. 316.
    Tang X, Tay Q, Chen Z et al (2013) Cu–In–Zn–S nanoporous spheres for highly efficient visible-light-driven photocatalytic hydrogen evolution. New J Chem 37:1878–1882. doi: 10.1039/C3NJ00266G CrossRefGoogle Scholar
  317. 317.
    Xu M, Zai J, Yuan Y, Qian X (2012) Band gap-tunable (CuIn)xZn2(1−x)S2 solid solutions: preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J Mater Chem 22:23929–23934. doi: 10.1039/C2JM35375J CrossRefGoogle Scholar
  318. 318.
    Tang X, Tay Q, Chen Z et al (2013) CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. J Mater Chem A 1:6359–6365. doi: 10.1039/C3TA01602A CrossRefGoogle Scholar
  319. 319.
    Zhang G, Zhang W, Wang P et al (2013) Stability of an H2-producing photo-catalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. Inter J Hydrogen En 38:1286–1296. doi: 10.1016/j.ijhydene.2012.11.033 CrossRefGoogle Scholar
  320. 320.
    Zhang G, Zhang W, Minakata D et al (2013) The pH effects on H2 evolution kinetics for visible light water splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst. Inter J Hydrogen En 38:11727–11736. doi: 10.1016/j.ijhydene.2013.06.140 CrossRefGoogle Scholar
  321. 321.
    Tsuji I, Kato H, Kudo A (2006) Photocatalytic hydrogen evolution on ZnS − CuInS2 − AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem Mater 18:1969–1975. doi: 10.1021/cm0527017 CrossRefGoogle Scholar
  322. 322.
    Tsuji I, Kato H, Kobayashi H, Kudo A (2005) Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)xZn2(1−x)S2 solid solutions. J Phys Chem B 109:7323–7329. doi: 10.1021/jp044722e CrossRefGoogle Scholar
  323. 323.
    Li Y, Chen G, Zhou C, Sun J (2009) A simple template-free synthesis of nanoporous ZnS–In2S3–Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chem Commun 2020–2022. doi: 10.1039/B819300B
  324. 324.
    Kudo A, Tsuji I, Kato H (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 1958–1959. doi: 10.1039/B204259B
  325. 325.
    Kale BB, Baeg JO, Lee SM et al (2006) CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst. Adv Func Mater 16:1349–1354. doi: 10.1002/adfm.200500525 CrossRefGoogle Scholar
  326. 326.
    Yu Y, Chen G, Wang G, Lv Z (2013) Visible-light-driven ZnIn2S4/CdIn2S4 composite photocatalyst with enhanced performance for photocatalytic H2 evolution. Inter J Hydrogen En 38:1278–1285. doi: 10.1016/j.ijhydene.2012.11.020 CrossRefGoogle Scholar
  327. 327.
    Chen X, Li L, Zhang W et al (2016) Fabricate globular flower-like CuS/CdIn2S4/ZnIn2S4 with high visible light response via microwave-assisted one − step method and its multipathway photoelectron migration properties for hydrogen evolution and pollutant degradation. ACS Sustainable Chem Eng 4:6680–6688. doi: 10.1021/acssuschemeng.6b01543 CrossRefGoogle Scholar
  328. 328.
    Mei Z, Ouyang S, Tang DM et al (2013) An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. Dalton Trans 42:2687–2690. doi: 10.1039/C2DT32271D CrossRefGoogle Scholar
  329. 329.
    Hou J, Yang C, Cheng H et al (2013) Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Phys Chem Chem Phys 15:15660–15668. doi: 10.1039/C3CP51857D CrossRefGoogle Scholar
  330. 330.
    Chen D, Ye J (2007) Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J Phys Chem Sol 68:2317–2320. doi: 10.1016/j.jpcs.2007.07.059 CrossRefGoogle Scholar
  331. 331.
    Kudo A, Nagane A, Tsuji I, Kato H (2002) H2 evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst NaInS2 with a layered structure. Chem Lett 31:882–883. doi: 10.1246/cl.2002.882 CrossRefGoogle Scholar
  332. 332.
    Shen S, Guo L (2006) Structural, textural and photocatalytic properties of quantum-sized In2S3-sensitized Ti-MCM-41 prepared by ion-exchange and sulfidation methods. J Sol State Chem 179:2629–2635. doi: 10.1016/j.jssc.2006.05.010 CrossRefGoogle Scholar
  333. 333.
    Li S, Wang C, Qiu H (2015) Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light. Inter J Hydrogen En 40:15503–15509. doi: 10.1016/j.ijhydene.2015.08.110 CrossRefGoogle Scholar
  334. 334.
    Wang F, Shifa TA, Zhan X et al (2015) Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 7:19764–19788. doi: 10.1039/c5nr06718a CrossRefGoogle Scholar
  335. 335.
    Lin Z, Ning S, Yang Z et al (2016) Large-scale preparation of heterometallic chalcogenide MnSb2S4 monolayer nanosheets with a high visible-light photocatalytic activity for H2 evolution. Chem Commun 52:13381–13384. doi: 10.1039/c6cc07127a CrossRefGoogle Scholar
  336. 336.
    Bessekhouad Y, Mohammedi M, Trari M (2002) Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst. Sol En Mater Sol Cells 73:339–350. doi: 10.1016/S0927-0248(01)00218-5 CrossRefGoogle Scholar
  337. 337.
    Abdi A, Denoyelle A, Commenges-Bernole M, Trari M (2013) Photocatalytic hydrogen evolution on new mesoporous material Bi2S3/Y-zeolite. Inter J Hydrogen En 38:2070–2078. doi: 10.1016/j.ijhydene.2012.11.085 CrossRefGoogle Scholar
  338. 338.
    Zhang K, Jing D, Xing C, Guo L (2007) Significantly improved photocatalytic hydrogen production activity over Cd1−xZnxS photocatalysts prepared by a novel thermal sulfuration method. Inter J Hydrogen En 32:4685–4691. doi: 10.1016/j.ijhydene.2007.08.022 CrossRefGoogle Scholar
  339. 339.
    del Valle F, Ishikawa A, Domen K et al (2009) Influence of Zn concentration in the activity of Cd1−xZnxS solid solutions for water splitting under visible light. Catal Today 143:51–56. doi: 10.1016/j.cattod.2008.09.024 CrossRefGoogle Scholar
  340. 340.
    Chan CC, Chang CC, Hsu CH et al (2014) Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1−xS solid solutions under visible light irradiation. Inter J Hydrogen En 39:1630–1639. doi: 10.1016/j.ijhydene.2013.11.059 CrossRefGoogle Scholar
  341. 341.
    Du H, Liang K, Yuan CZ et al (2016) Bare Cd1−xZnxS ZB/WZ heterophase nano-junctions for visible light photocatalytic hydrogen production with high efficiency. ACS Appl Mater Interfaces 8:24550–24558. doi: 10.1021/acsami.6b06182 CrossRefGoogle Scholar
  342. 342.
    Roy AM, De GC (2003) Immobilisation of CdS, ZnS and mixed ZnS–CdS on filter paper: effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol A 157:87–92. doi: 10.1016/S1010-6030(02)00430-6 CrossRefGoogle Scholar
  343. 343.
    Zhang X, Jing D, Liu M, Guo L (2008) Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts. Catal Commun 9:1720–1724. doi: 10.1016/j.catcom.2008.01.032
  344. 344.
    Stroyuk AL, Raevskaya AE, Korzhak AV et al (2009) Photocatalytic production of hydrogen in systems based on CdxZn1−xS/Ni0 nanostructures. Theoret Exp Chem 45:12–22CrossRefGoogle Scholar
  345. 345.
    Kimi M, Yuliati L, Shamsuddin M (2011) Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9−2xS solid solution photocatalysts. Inter J Hydrogen En 36:9453–9461. doi: 10.1016/j.ijhydene.2011.05.044 CrossRefGoogle Scholar
  346. 346.
    Peng S, An R, Li Y et al (2012) Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Inter J Hydrogen En 37:1366–1374. doi: 10.1016/j.ijhydene.2011.09.140 CrossRefGoogle Scholar
  347. 347.
    Sathish M, Viswanath RP (2007) Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal and support. Catal Today 129:421–427. doi: 10.1016/j.cattod.2006.12.008 CrossRefGoogle Scholar
  348. 348.
    Li Y, Du Y, Peng S et al (2008) Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching. Inter J Hydrogen En 33:2007–2013. doi: 10.1016/j.ijhydene.2008.02.023 CrossRefGoogle Scholar
  349. 349.
    Chang CM, Orchard KL, Martindale CM, Reisner E (2016) Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J Mater Chem A 4:2856–2862. doi: 10.1039/c5ta04136h CrossRefGoogle Scholar
  350. 350.
    Jana MK, Gupta U, Rao CNR (2016) Hydrazine as a hydrogen carrier in the photocatalytic generation of H2 using CdS quantum dots. Dalton Trans 45:15137–15141. doi: 10.1039/c6dt02505f CrossRefGoogle Scholar
  351. 351.
    Silva LA, Ryu SY, Choi J et al (2008) Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J Phys Chem C 112:12069–12073. doi: 10.1021/jp8037279 CrossRefGoogle Scholar
  352. 352.
    Li K, Han M, Chen R et al (2016) Hexagonal@Cubic CdS Core@Shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv Mater 28:8906–8911. doi: 10.1002/adma.201601047 CrossRefGoogle Scholar
  353. 353.
    Baran MP, Korsunskaya NE, Stara TR et al (2016) Graded ZnS/ZnSxO1−x heterostructures produced by oxidative photolysis of zinc sulfide: structure, optical properties and photocatalytic evolution of molecular hydrogen. J Photochem Photobiol A 329:213–220. doi: 10.1016/j.jphotochem.2016.07.003 CrossRefGoogle Scholar
  354. 354.
    Jang JS, Joshi UA, Lee JS (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287. doi: 10.1021/jp072683b CrossRefGoogle Scholar
  355. 355.
    Kida T, Guan G, Minami Y et al (2003) Photocatalytic hydrogen production from water over a LaMnO3/CdS nanocomposite prepared by the reverse micelle method. J Mater Chem 13:1186–1191. doi: 10.1039/B211812B CrossRefGoogle Scholar
  356. 356.
    Kida T, Guan G, Yamada N et al (2004) Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. Inter J Hydrogen En 29:269–274. doi: 10.1016/j.ijhydene.2003.08.007 CrossRefGoogle Scholar
  357. 357.
    Ma G, Yan H, Shi J et al (2008) Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. J Catal 260:134–140. doi: 10.1016/j.jcat.2008.09.017 CrossRefGoogle Scholar
  358. 358.
    Frame FA, Carroll EC, Larsen DS et al (2008) First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chem Commun 2206–2208. doi: 10.1039/B718796C
  359. 359.
    Holmes MA, Townsend TK, Osterloh FE (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48:371–373. doi: 10.1039/C1CC16082F CrossRefGoogle Scholar
  360. 360.
    Grigioni I, Bernareggi M, Sinibaldi G et al (2016) Size-dependent performance of CdSe quantum dots in the photocatalytic evolution of hydrogen under visible light irradiation. Appl Catal A 518:176–180. doi: 10.1016/j.apcata.2015.09.021 CrossRefGoogle Scholar
  361. 361.
    Zhao J, Holmes MA, Osterloh FE (2013) Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7:4316–4325. doi: 10.1021/nn400826h CrossRefGoogle Scholar
  362. 362.
    Rasamani KD, Li Z, Sun Y (2016) Significant enhancement of photocatalytic water splitting enabled by elimination of surface traps in Pt-tipped CdSe nanorods Nanoscale 8:18621–18625. doi: 10.1039/c6nr06902a Google Scholar
  363. 363.
    Costi R, Young ER, Bulović V, Nocera DG (2013) Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/Cobalt metal thin film. ACS Appl Mater Interfaces 5:2364–2367. doi: 10.1021/am400364u CrossRefGoogle Scholar
  364. 364.
    Yang S, Xu CY, Yang L et al (2016) Solution-phase synthesis of g-In2Se3 nanoparticles for highly efficient photocatalytic hydrogen generation under simulated sunlight irradiation. RSC Adv 6:106671–106675. doi: 10.1039/c6ra21784b CrossRefGoogle Scholar
  365. 365.
    Gurunathan K, Baeg JO, Lee SM et al (2008) Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production. Inter J Hydrogen En 33:2646–2652. doi: 10.1016/j.ijhydene.2008.03.018 CrossRefGoogle Scholar
  366. 366.
    Saadi S, Bouguelia A, Derbal A, Trari M (2007) Hydrogen photoproduction over new catalyst CuLaO2. J Photochem Photobiol A 187:97–104. doi: 10.1016/j.jphotochem.2006.09.017 CrossRefGoogle Scholar
  367. 367.
    Koriche N, Bouguelia A, Trari M (2006) Photocatalytic hydrogen production over new oxide CuLaO2.62. Inter J Hydrogen En 31:1196–1203. doi: 10.1016/j.ijhydene.2005.08.015 CrossRefGoogle Scholar
  368. 368.
    Koriche N, Bouguelia A, Aider A, Trari M (2005) Photocatalytic hydrogen evolution over delafossite CuAlO2. Inter J Hydrogen En 30:693–699. doi: 10.1016/j.ijhydene.2004.06.011 CrossRefGoogle Scholar
  369. 369.
    Zhou C, Zhao Y, Shang L et al (2016) Facile synthesis of ultrathin SnNb2O6 nanosheets towards improved visible-light photocatalytic H2-production activity. Chem Commun 52:8239–8242. doi: 10.1039/c6cc03739a CrossRefGoogle Scholar
  370. 370.
    Ye J, Zou Z, Arakawa H et al (2002) Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+). J Photochem Photobiol A 148:79–83. doi: 10.1016/S1010-6030(02)00074-6 CrossRefGoogle Scholar
  371. 371.
    Zhu H, Fang M, Hyang Z et al (2016) Novel carbon-incorporated porous ZnFe2O4 nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation. RSC Adv 6:56069–56076. doi: 10.1039/c6ra05098k CrossRefGoogle Scholar
  372. 372.
    Pai YH, Tsai CT, Fang SY (2013) Enhanced photocatalytic hydrogen generation with Pt Nanoparticles on multi-phase polycrystalline microporous MnO2 photocatalyst. J Power Sources 223:107–113. doi: 10.1016/j.jpowsour.2012.09.024 CrossRefGoogle Scholar
  373. 373.
    Jin S, Wang X, Ju M et al (2015) Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J Phys Chem C 119:18221–18228. doi: 10.1021/acs.jpcc.5b04092 CrossRefGoogle Scholar
  374. 374.
    Hu C, Chu K, Zhao Y, Teoh WY (2014) Efficient photoelectrochemical water splitting over anodized p-Type NiO porous films. ACS Appl Mater Interfaces 6:18558–18568. doi: 10.1021/am507138b CrossRefGoogle Scholar
  375. 375.
    Manikandan M, Tanabe T, Li P et al (2014) Photocatalytic water splitting under visible light by mixed-valence Sn3O4. ACS Appl Mater Interfaces 6:3790–3793. doi: 10.1021/am500157u CrossRefGoogle Scholar
  376. 376.
    Tijare SN, Joshi MV, Padole PS et al (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Inter J Hydrogen En 37:10451–10456. doi: 10.1016/j.ijhydene.2012.01.120 CrossRefGoogle Scholar
  377. 377.
    May KJ, Fenning DP, Ming T et al (2015) Thickness-dependent photoelectrochemical water splitting on ultrathin LaFeO3 films grown on Nb:SrTiO3. J Phys Chem Lett 6:977–985. doi: 10.1021/acs.jpclett.5b00169 CrossRefGoogle Scholar
  378. 378.
    Pan C, Takata T, Nakabayashi M et al (2015) A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 54:1–6. doi: 10.1002/anie.201410961 CrossRefGoogle Scholar
  379. 379.
    Lee CW, Kim DW, Cho IS et al (2012) Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. Inter J Hydrogen En 37:10557–10563. doi: 10.1016/j.ijhydene.2012.04.063 CrossRefGoogle Scholar
  380. 380.
    Shibli SMA, Arun PS, Raj AV (2015) Exploration of octahedrally shaped MnCo2O4 catalyst particles for visible light driven photocatalytic water splitting reaction. RSC Adv 5:19393–19399. doi: 10.1039/C4RA12646G CrossRefGoogle Scholar
  381. 381.
    Liu J, Wen S, Zou X et al (2013) Visible-light-responsive copper(II) borate photocatalysts with intrinsic midgap states for water splitting. J Mater Chem A 1:1553–1556. doi: 10.1039/C2TA00522K CrossRefGoogle Scholar
  382. 382.
    Luan J, Guo N, Chen B (2014) Hydrogen production with Ga2BiSbO7, Fe2BiSbO7 and Gd2BiSbO7 as photocatalysts under visible light irradiation. Inter J Hydrogen En 39:1228–1236. doi: 10.1016/j.ijhydene.2013.11.020 CrossRefGoogle Scholar
  383. 383.
    Mahapure SA, Palei PK, Nikam LK et al (2013) Novel nanocrystalline zinc silver antimonate (ZnAg3SbO4): an efficient & ecofriendly visible light photocatalyst with enhanced hydrogen generation. J Mater Chem A 1:12835–12840. doi: 10.1039/C3TA12883K CrossRefGoogle Scholar
  384. 384.
    Guo S, Han S (2014) Constructing a novel hierarchical 3D flower-like nano/micro titanium phosphate with efficient hydrogen evolution from water splitting. J Power Sources 267:9–13. doi: 10.1016/j.jpowsour.2014.05.011 CrossRefGoogle Scholar
  385. 385.
    Wang G, Jing Y, Ju J et al (2015) Ga4B2O9: an efficient borate photocatalyst for overall water splitting without cocatalyst. Inorg Chem 54:2945–2949. doi: 10.1021/ic5031087 CrossRefGoogle Scholar
  386. 386.
    Liang J, Xu J, Gu Q et al (2013) A novel Zn2GeO4 superstructure for effective photocatalytic hydrogen generation. J Mater Chem A 1:7798–7805. doi: 10.1039/C3TA11374D CrossRefGoogle Scholar
  387. 387.
    Yan S, Wan L, Li Z, Zou Z (2011) Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. Chem Commun 47:5632–5634. doi: 10.1039/C1CC10513B CrossRefGoogle Scholar
  388. 388.
    Pan B, Xie Q, Wang H et al (2013) Synthesis and photocatalytic hydrogen production of a novel photocatalyst LaCO3OH. J Mater Chem A 1:6629–6634. doi: 10.1039/C3TA01553J CrossRefGoogle Scholar
  389. 389.
    Ruiz-Gomez MA, Torres-Martinez LM, Figueroa-Torres MZ et al (2013) Hydrogen evolution from pure water over a new advanced photocatalyst Sm2GaTaO7. Inter J Hydrogen En 38:12554–12561. doi: 10.1016/j.ijhydene.2012.11.131 CrossRefGoogle Scholar
  390. 390.
    Ye J, Zou Z, Oshikiri M et al (2002) A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem Phys Lett 356:221–226. doi: 10.1016/S0009-2614(02)00254-3 CrossRefGoogle Scholar
  391. 391.
    Lv M, Liu G, Xu X (2016) Homologous compounds ZnnIn2O3+n (n = 4, 5, and 7) containing laminated functional groups as efficient photocatalysts for hydrogen production. ACS Appl Mater Interfaces 8:28700–28708. doi: 10.1021/acsami.6b10951 CrossRefGoogle Scholar
  392. 392.
    Huang Q, Ye Z, Xiao X (2015) Recent progress in photocathodes for hydrogen evolution. J Mater Chem A 3:15824–15837. doi: 10.1039/c5ta03594e CrossRefGoogle Scholar
  393. 393.
    Luo J, Steier L, Son MK et al (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16:1848–1857. doi: 10.1021/acs.nanolett.5b04929 CrossRefGoogle Scholar
  394. 394.
    Dubale AA, Su WN, Tamirat AG et al (2014) The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J Mater Chem A 2:18383–18397. doi: 10.1039/c4ta03464c CrossRefGoogle Scholar
  395. 395.
    Dubale AA, Tamirat AG, Chen H-M (2016) A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J Mater Chem A 4:2205–2216. doi: 10.1039/c5ta09464j
  396. 396.
    Dong Y, Chen Y, Jiang P et al (2016) A novel g-C3N4 based photocathode for photoelectrochemical hydrogen evolution. RSC Adv 6:7465–7473. doi: 10.1039/c5ra23265a CrossRefGoogle Scholar
  397. 397.
    Basu M, Zhang ZW, Chen CJ et al (2016) CoSe2 embedded in C3N4: an efficient photocathode for photoelectrochemical water splitting. ACS Appl Mater Interfaces 8:26690–26696. doi: 10.1021/acsami.6b06520 CrossRefGoogle Scholar
  398. 398.
    Li S, Zhang P, Song X, Gao L (2015) Photoelectrochemical hydrogen production of TiO2 passivated Pt/Si-nanowire composite photocathode. ACS Appl Mater Interfaces 7:18560–18565. doi: 10.1021/acsami.5b04936 CrossRefGoogle Scholar
  399. 399.
    Bao XQ, Cerqueira MF, Alpuimab P, Liu L (2015) Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chem Commun 51:10742–10745. doi: 10.1039/c5cc02331a CrossRefGoogle Scholar
  400. 400.
    Lewis NS (2016) Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 11:1010–1019. doi: 10.1038/nnano.2016.194 CrossRefGoogle Scholar
  401. 401.
    Chandrasekaran S, McInnes SJP, Macdonald TJ (2015) Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting. RSC Adv 5:85978–85982. doi: 10.1039/c5ra12559f
  402. 402.
    Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 34:645–648. doi: 10.1126/science.1209816 CrossRefGoogle Scholar
  403. 403.
    Patra BK, Khilari S, Pradhan D, Pradhan N (2016) Hybrid dot-disk Au-CuInS2 nanostructures as active photocathode for efficient evolution of hydrogen from water. Chem Mater 28:4358–4366. doi: 10.1021/acs.chemmater.6b01357 CrossRefGoogle Scholar
  404. 404.
    Chae SY, Park SJ, Han SG et al (2016) Enhanced photocurrents with ZnS passivated Cu(In, Ga)(Se, S)2 photocathodes synthesized using a nonvacuum process for solar water splitting. J Am Chem Soc 138:15673–15681. doi: 10.1021/jacs.6b09595 CrossRefGoogle Scholar
  405. 405.
    Kaneko H, Minegishi T, Nakabayashi M et al (2016) Enhanced hydrogen evolution under simulated sunlight from neutral electrolytes on (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes prepared by a bilayer method. Angew Chem Int Ed 55:15329–15333. doi: 10.1002/anie.201609202 CrossRefGoogle Scholar
  406. 406.
    Abe T, Fukui K, Kawai Y et al (2016) A water splitting system using an organophotocathode and titanium dioxide photoanode capable of bias-free H2 and O2 evolution. Chem Commun 52:7735–7737. doi: 10.1039/c6cc01225f CrossRefGoogle Scholar
  407. 407.
    Hu Z, Yuan L, Liu Z et al (2016) An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angew Chem Int Ed 55:9580–9585. doi: 10.1002/anie.201603331 CrossRefGoogle Scholar
  408. 408.
    Dang H, Dong X, Dong Y et al (2014) Enhancing the photocatalytic H2 evolution activity of red phosphorous by using noble-metal-free Ni(OH)2 under photoexcitation up to 700 nm. RSC Adv 4:44823–44826. doi: 10.1039/c4ra06867j CrossRefGoogle Scholar
  409. 409.
    Gao Y, Wang Y, Wang Y (2007) Photocatalytic hydrogen evolution from water on SiC under visible light irradiation. React Kin Catal Lett 91:13–19. doi: 10.1007/s11144-007-5064-x CrossRefGoogle Scholar
  410. 410.
    Wang M, Chen J, Liao X et al (2014) Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Inter J Hydrogen En 39:14581–14587. doi: 10.1016/j.ijhydene.2014.07.068 CrossRefGoogle Scholar
  411. 411.
    Wang D, Guo Z, Peng Y, Yuan W (2015) Visible light induced photocatalytic overall water splitting over micro-SiC driven by the Z-scheme system. Catal Commun 61:53–56. doi: 10.1016/j.catcom.2014.12.008 CrossRefGoogle Scholar
  412. 412.
    Wang Y, Guo X, Dong L et al (2013) Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. Inter J Hydrogen En 38:12733–12738. doi: 10.1016/j.ijhydene.2013.07.062 CrossRefGoogle Scholar
  413. 413.
    Liu H, She G, Mu L, Shi W (2012) Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater Res Bull 47:917–920. doi: 10.1016/j.materresbull.2011.12.046 CrossRefGoogle Scholar
  414. 414.
    Wang B, Wang Y, Lei Y et al (2016) Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res 9:886–898. doi: 10.1007/s12274-015-0971-z CrossRefGoogle Scholar
  415. 415.
    Kida T, Minami Y, Guan G et al (2006) Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J Mater Sci 41:3527–3534. doi: 10.1007/s10853-005-5655-8 CrossRefGoogle Scholar
  416. 416.
    Yoshimizu M, Kobayashi R, Saegusa M et al (2015) Photocatalytic hydrogen evolution over β-iron silicide under infrared-light irradiation. Chem Commun 51:2818–2820. doi: 10.1039/C4CC08093A CrossRefGoogle Scholar
  417. 417.
    Yoneyama H, Matsumoto N, Tamura H (1986) Photocatalytic decomposition of formic acid on platinized n-type silicon powder in aqueous solution. Bull Chem Soc Jpn 59:3302–3304. doi: 10.1246/bcsj.59.3302 CrossRefGoogle Scholar
  418. 418.
    Jang YJ, Ryu J, Hong D et al (2016) A multi-stacked hyperporous silicon flake for highly active solar hydrogen production. Chem Commun 52:10221–10224. doi: 10.1039/c6cc04775k CrossRefGoogle Scholar
  419. 419.
    Zhang H, Li A, Wang Z et al (2016) Decorating mesoporous silicon with amorphous metal–phosphorous-derived nanocatalysts towards enhanced photoelectrochemical water reduction. J Mater Chem A 4:14960–14967. doi: 10.1039/c6ta05725j CrossRefGoogle Scholar
  420. 420.
    Lv C, Chen Z, Chen Z et al (2015) Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. J Mater Chem A 3:17669–17675. doi: 10.1039/c5ta03438h CrossRefGoogle Scholar
  421. 421.
    Li S, Wang H, Li D et al (2016) Siloxene nanosheets: a metal-free semiconductor for water splitting. J Mater Chem A 4:15841–15844. doi: 10.1039/c6ta07545b CrossRefGoogle Scholar
  422. 422.
    Mou Z, Yin S, Zhu M et al (2013) RuO2/TiSi2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation. Phys Chem Chem Phys 15:2793–2799. doi: 10.1039/c2cp44270a CrossRefGoogle Scholar
  423. 423.
    Wu W, Zhan L, Ohkubo K et al (2015) Photocatalytic H2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion. J Photochem Photobiol, B 152:63–70. doi: 10.1016/j.jphotobiol.2014.10.018 CrossRefGoogle Scholar
  424. 424.
    Liu Q, Chen T, Guo Y et al (2016) Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B 193:248–258. doi: 10.1016/j.apcatb.2016.04.034 CrossRefGoogle Scholar
  425. 425.
    Yang P, Zhao J, Wang J et al (2015) Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv 5:21332–21335. doi: 10.1039/c5ra01924a CrossRefGoogle Scholar
  426. 426.
    Ming H, Ma Z, Liu Y et al (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531. doi: 10.1039/C2DT30985H CrossRefGoogle Scholar
  427. 427.
    Zhao S, Li C, Wang L et al (2016) Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon 99:599–606. doi: 10.1016/j.carbon.2015.12.088 CrossRefGoogle Scholar
  428. 428.
    Wang J, Ng YH, Lim YF, Ho GW (2014) Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H2 production. RSC Adv 4:44117–44123. doi: 10.1039/c4ra07290a CrossRefGoogle Scholar
  429. 429.
    Thomas A, Fischer A, Goettmann F et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908. doi: 10.1039/b800274f CrossRefGoogle Scholar
  430. 430.
    Zhou L, Zhang H, Sun H et al (2016) Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal Sci Technol 6:002–7023. doi: 10.1039/c6cy01195k CrossRefGoogle Scholar
  431. 431.
    Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123. doi: 10.1016/j.apsusc.2016.07.030 CrossRefGoogle Scholar
  432. 432.
    Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Ed 54:12868–12884. doi: 10.1002/anie.201501788 CrossRefGoogle Scholar
  433. 433.
    Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606. doi: 10.1021/cs300240x CrossRefGoogle Scholar
  434. 434.
    Zhu J, Xiao P, Li H, Carabineiro SA (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465. doi: 10.1021/am502925j CrossRefGoogle Scholar
  435. 435.
    Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev 45:2308–2326. doi: 10.1039/C5CS00767D CrossRefGoogle Scholar
  436. 436.
    Patnaik S, Martha S, Parida KM (2016) An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv 6:46929–46951. doi: 10.1039/c5ra26702a CrossRefGoogle Scholar
  437. 437.
    Zhang G, Wang X (2013) A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution. J Catal 307:246–253. doi: 10.1016/j.jcat.2013.07.026 CrossRefGoogle Scholar
  438. 438.
    Chuang PK, Wu KH, Yeh TF, Teng H (2016) Extending the π-Conjugation of g-C3N4 by Incorporating Aromatic Carbon for Photocatalytic H2 Evolution from Aqueous Solution. ACS Sustainable Chem Eng 4:5989–5997. doi: 10.1021/acssuschemeng.6b01266 CrossRefGoogle Scholar
  439. 439.
    Fan X, Zhang L, Cheng R et al (2015) Construction of graphitic C3N4-based intramolecular donor − acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal 5:5008–5015. doi: 10.1021/acscatal.5b01155 CrossRefGoogle Scholar
  440. 440.
    Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107. doi: 10.1021/jz500546b CrossRefGoogle Scholar
  441. 441.
    Wang X, Maeda K, Chen X et al (2009) Polymer semiconductors for Artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681. doi: 10.1021/ja809307s CrossRefGoogle Scholar
  442. 442.
    Zheng D, Zhang G, Hou Y, Wang X (2016) Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. Appl Catal A 521:2–8. doi: 10.1016/j.apcata.2015.10.037 CrossRefGoogle Scholar
  443. 443.
    Liang Q, Li Z, Yu X et al (2015) Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater 27:4634–4639. doi: 10.1002/adma.201502057 CrossRefGoogle Scholar
  444. 444.
    He F, Chen G, Zhou Y et al (2015) The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chem Commun 51:16244–16246. doi: 10.1039/c5cc06713h CrossRefGoogle Scholar
  445. 445.
    Shen S, Zhao D, Chen J et al (2016) Enhanced photocatalytic hydrogen evolution over graphitic carbon nitride modified with Ti-activated mesoporous silica. Appl Catal A 521:111–117. doi: 10.1016/j.apcata.2015.11.004 CrossRefGoogle Scholar
  446. 446.
    Qiao S, Mitchell RW, Coulson B et al (2016) Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production. Carbon 106:320–329. doi: 10.1016/j.carbon.2016.05.039 CrossRefGoogle Scholar
  447. 447.
    Chen X, Jun YS, Takanabe K et al (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21:4093–4095. doi: 10.1021/cm902130z CrossRefGoogle Scholar
  448. 448.
    Xu L, Jin B, Zhang J et al (2016) Efficient hydrogen generation from formic acid using AgPd nanoparticles immobilized on carbon nitride-functionalized SBA-15. RSC Adv 6:46908–46914. doi: 10.1039/c6ra06071d CrossRefGoogle Scholar
  449. 449.
    Cheng R, Fan X, Wang M et al (2016) Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv 6:18990–18995. doi: 10.1039/c5ra27221a CrossRefGoogle Scholar
  450. 450.
    Tong J, Zhang L, Li F et al (2015) Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution. RSC Adv 5:88149–88153. doi: 10.1039/c5ra16988g CrossRefGoogle Scholar
  451. 451.
    Han Q, Wang B, Gao J et al (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-effciency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751. doi: 10.1021/acsnano.5b07831 CrossRefGoogle Scholar
  452. 452.
    Fan M, Song C, Chen T et al (2016) Visible-light-drived high photocatalytic activities of Cu/g-C3N4 photocatalysts for hydrogen production. RSC Adv 6:34633–34640. doi: 10.1039/c5ra27755h CrossRefGoogle Scholar
  453. 453.
    Bi L, Meng D, Bu Q et al (2016) Electron acceptor of Ni decorated porous carbon nitride applied in photocatalytic hydrogen production. Phys Chem Chem Phys 18:31534–31541. doi: 10.1039/c6cp05618k CrossRefGoogle Scholar
  454. 454.
    Xu L, Liu N, Hong B et al (2016) Nickel–platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine. RSC Adv 6:31687–31691. doi: 10.1039/c6ra01335j CrossRefGoogle Scholar
  455. 455.
    Ge L, Han C, Xiao X, Guo L (2013) Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Inter J Hydrogen En 38:6960–6969. doi: 10.1016/j.ijhydene.2013.04.006 CrossRefGoogle Scholar
  456. 456.
    Jin X, Fan X, Tian J et al (2016) MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv 6:52611–52619. doi: 10.1039/c6ra07060d CrossRefGoogle Scholar
  457. 457.
    Sun Q, Wang P, Yu H, Wang X (2016) In situ hydrothermal synthesis and enhanced photocatalytic H2-evolution performance of suspended rGO/g-C3N4 photocatalysts. J Mol Catal A 424:369–376. doi: 10.1016/j.molcata.2016.09.015 CrossRefGoogle Scholar
  458. 458.
    Suryawanshi A, Dhanasekaran P, Mhamane D et al (2012) Ioubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects. Inter J Hydrogen En 37:9584–9589. doi: 10.1016/j.ijhydene.2012.03.123 CrossRefGoogle Scholar
  459. 459.
    Ge L, Han C (2012) Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl Catal B 117–118:268–274. doi: 10.1016/j.apcatb.2012.01.021 CrossRefGoogle Scholar
  460. 460.
    Wang N, Li J, Wu L et al (2016) MnO2 and carbon nanotube co-modified C3N4 composite catalyst for enhanced water splitting activity under visible light irradiation. Inter J Hydrogen En 41:22743–22750. doi: 10.1016/j.ijhydene.2016.10.068 CrossRefGoogle Scholar
  461. 461.
    Gao LF, Wen T, Xu JY et al (2016) Iron-doped carbon nitride-type polymers as homogeneous organocatalysts for visible light-driven hydrogen evolution. ACS Appl Mater Interfaces 8:617–624. doi: 10.1021/acsami.5b09684 CrossRefGoogle Scholar
  462. 462.
    Min S, Lu G (2012) Enhanced electron transfer from the excited Eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J Phys Chem C 116:19644–19652. doi: 10.1021/jp304022f CrossRefGoogle Scholar
  463. 463.
    Zhang H, Li S, Lu R, Yu A (2015) Time-resolved study on xanthene dye-sensitized carbon nitride photocatalytic systems. ACS Appl Mater Interfaces 7:21868–21874. doi: 10.1021/acsami.5b06309 CrossRefGoogle Scholar
  464. 464.
    Mori K, Itoh T, Kakudo H et al (2015) Nickel-supported carbon nitride photo-catalyst combined with organic dye for visible-light-driven hydrogen evolution from water. Phys Chem Chem Phys 17:24086–24091. doi: 10.1039/c5cp04493f CrossRefGoogle Scholar
  465. 465.
    Cao SW, Yuan YP, Fang J et al (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Inter J Hydrogen En 38:1258–1266. doi: 10.1016/j.ijhydene.2012.10.116 CrossRefGoogle Scholar
  466. 466.
    Zhang Z, Zhang Y, Lu L et al (2017) Graphitic carbon nitride nanosheet for photo-catalytic hydrogen oduction: the impact of morphology and element composition. Appl Surf Sci 391:369–375. doi: 10.1016/j.apsusc.2016.05.174 CrossRefGoogle Scholar
  467. 467.
    Yang S, Gong Y, Zhang J et al (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456. doi: 10.1002/adma.201204453 CrossRefGoogle Scholar
  468. 468.
    Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772. doi: 10.1039/C3TA13188B CrossRefGoogle Scholar
  469. 469.
    Bu X, Bu Y, Yang S et al (2016) Graphitic carbon nitride nanoribbon for enhanced visible-light photocatalytic H2 production. RSC Adv 6:112210–112214. doi: 10.1039/c6ra23218c CrossRefGoogle Scholar
  470. 470.
    Schwinghammer K, Mesch MB, Duppel V (2014) Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J Am Chem Soc 136:1730–1733. doi: 10.1021/ja411321s CrossRefGoogle Scholar
  471. 471.
    Li L, Fang W, Zhang P et al (2016) Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem A 4:12402–12406. doi: 10.1039/c6ta04711d CrossRefGoogle Scholar
  472. 472.
    Lin L, Ou H, Zhang Y, Wang X (2016) Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal 6:3921–3931. doi: 10.1021/acscatal.6b00922 CrossRefGoogle Scholar
  473. 473.
    Bhunia MK, Melissen S, Parida MR (2015) Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity. Chem Mater 27:8237–8247. doi: 10.1021/acs.chemmater.5b02974 CrossRefGoogle Scholar
  474. 474.
    Liu H, Chen D, Wang Z et al (2017) Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl Catal B 203:300–313. doi: 10.1016/j.apcatb.2016.10.014 CrossRefGoogle Scholar
  475. 475.
    Li Y, Xu H, Ouyang S, Ye J (2016) Metal–organic frameworks for photocatalysis. Phys Chem Chem Phys 18:7563–7572. doi: 10.1039/c5cp05885f CrossRefGoogle Scholar
  476. 476.
    So MC, Wiederrecht GP, Mondloch JE et al (2015) Metal–organic framework materials for light-harvesting and energy transfer. Chem Commun 51:3501–3510. doi: 10.1039/c4cc09596k CrossRefGoogle Scholar
  477. 477.
    Xiao JD, Shang Q, Xiong Y et al (2016) Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters. Angew Chem Int Ed 55:9389–9393. doi: 10.1002/anie.201603990 CrossRefGoogle Scholar
  478. 478.
    Zhou JJ, Wang R, Liu XL et al (2015) In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 346:278–283. doi: 10.1016/j.apsusc.2015.03.210 CrossRefGoogle Scholar
  479. 479.
    Lin R, Shen L, Ren Z et al (2014) Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chem Commun 50:8533–8535. doi: 10.1039/c4cc01776e CrossRefGoogle Scholar
  480. 480.
    He J, Wang J, Chen Y et al (2014) A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50:7063–7066. doi: 10.1039/c4cc01086h CrossRefGoogle Scholar
  481. 481.
    Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B 200:448–457. doi: 10.1016/j.apcatb.2016.07.032 CrossRefGoogle Scholar
  482. 482.
    Sasan K, Lin Q, Mao CY, Feng P (2014) Incorporation of iron hydrogenase active sites into a highly stable metal–organic framework for photocatalytic hydrogen generation. Chem Commun 50:10390–10393. doi: 10.1039/c4cc03946g CrossRefGoogle Scholar
  483. 483.
    Ragon F, Campo B, Yang Q et al (2015) Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. J Mater Chem A 3:3294–3309. doi: 10.1039/C4TA03992K CrossRefGoogle Scholar
  484. 484.
    Wang D, Song Y, Cai J et al (2016) Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New J Chem 40:9170–9175. doi: 10.1039/c6nj01989g CrossRefGoogle Scholar
  485. 485.
    Vaddipalli SR, Sanivarapu SR, Vengatesan S (2016) Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water split-ting: stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces 8:23049–23059. doi: 10.1021/acsami.6b06851 CrossRefGoogle Scholar
  486. 486.
    Sun X, Yu Q, Zhang F et al (2016) A dye-like ligand-based metal—organic framework for efficient photocatalytic hydrogen production from aqueous solution. Catal Sci Technol 6:3840–3844. doi: 10.1039/c5cy01716e CrossRefGoogle Scholar
  487. 487.
    Dong XY, Zhang M, Pei RB et al (2016) A crystalline copper(II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew Chem Int Ed 55:2073–2077. doi: 10.1002/anie.201509744 CrossRefGoogle Scholar
  488. 488.
    Xu JY, Zhai XP, Gao LF et al (2016) In situ preparation of a MOF-derived magnetic carbonaceous catalyst for visible-light-driven hydrogen evolution. RSC Adv 6:2011–2018. doi: 10.1039/c5ra23838b CrossRefGoogle Scholar
  489. 489.
    Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW (2016) Semiconductor-electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 49:733–740. doi: 10.1021/acs.accounts.6b00001 CrossRefGoogle Scholar
  490. 490.
    Orlandi M, Dalle Carbonare N, Caramori S, Bignozzi CA, Berardi S, Mazzi A, El Koura Z, Bazzanella N, Patel N, Miotello A (2016) Porous versus compact nanosized Fe(III)-based water oxidation catalyst for photoanodes functionalization. ACS Appl Mater Interfaces 8:20003–20011. doi: 10.1021/acsami.6b05135 CrossRefGoogle Scholar
  491. 491.
    Ronconi F, Syrgiannis Z, Bonasera A, Prato M, Argazzi R, Caramori S, Cristino V, Bignozzi CA (2015) Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting. J Am Chem Soc 137:4630–4633. doi: 10.1021/jacs.5b01519 CrossRefGoogle Scholar
  492. 492.
    Wang J, Li B, Chen J et al (2012) Enhanced photocatalytic H2-production activity of CdxZn1−xS nanocrystals by surface loading MS (M = Ni Co, Cu) species. Appl Surf Sci 259:118–123. doi: 10.1016/j.apsusc.2012.07.003 CrossRefGoogle Scholar
  493. 493.
    Zong X, Yan H, Wu G et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177. doi: 10.1021/ja8007825 CrossRefGoogle Scholar
  494. 494.
    Ji J, Guo L, Li Q et al (2015) A bifunctional catalyst for hydrogen evolution reaction: the interactive influences between CdS and MoS2 on photoelectro-chemical activity. Inter J Hydrogen En 40:3813–3821. doi: 10.1016/j.ijhydene.2015.01.075 CrossRefGoogle Scholar
  495. 495.
    Jia T, Kolpin A, Ma C et al (2014) A graphene dispersed CdS–MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun 50:1185–1188. doi: 10.1039/C3CC47301E CrossRefGoogle Scholar
  496. 496.
    Lu Y, Wang D, Yang P et al (2014) Coupling ZnxCd1−xS nanoparticles with graphene-like MoS2: superior interfacial contact, low overpotential and enhanced photocatalytic activity under visible-light irradiation. Catal Sci Technol 4:2650–2657. doi: 10.1039/C4CY00331D CrossRefGoogle Scholar
  497. 497.
    Zhu B, Lin B, Zhou Y et al (2014) Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J Mater Chem A 2:3819–3827. doi: 10.1039/C3TA14819J CrossRefGoogle Scholar
  498. 498.
    Zhao H, Dong Y, Jiang P et al (2015) In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhanced photocatalytic H2 production from water. J Mater Chem A 3:7375–7381. doi: 10.1039/C5TA00402K CrossRefGoogle Scholar
  499. 499.
    Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. En Environ Sci 5:5577–5591. doi: 10.1039/C2EE02618J CrossRefGoogle Scholar
  500. 500.
    Liu M, Li F, Sun Z et al (2014) Noble-metal-free photocatalysts MoS2–graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chem Commun 50:11004–11007. doi: 10.1039/C4CC04653F CrossRefGoogle Scholar
  501. 501.
    Redman DW, Kim HJ, Stevenson KJ, Rose MJ (2016) Photo-assisted electrodeposition of MoSx from ionic liquids on organic-functionalized silicon photoelectrodes for H2 generation. J Mater Chem A 4:7027–7035. doi: 10.1039/C5TA09684G CrossRefGoogle Scholar
  502. 502.
    Kumar DP, Hong S, Reddy DA, Kim TK (2016) Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. J Mater Chem A 4:18551–18558. doi: 10.1039/c6ta08628d CrossRefGoogle Scholar
  503. 503.
    Du P, Zhu Y, Zhng J et al (2016) Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Adv 6:74394–74399. doi: 10.1039/c6ra10170d CrossRefGoogle Scholar
  504. 504.
    Sasikala R, Gaikwad AP, Jayakumar OD et al (2015) Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids Surf A 481:485–492. doi: 10.1016/j.colsurfa.2015.06.027 CrossRefGoogle Scholar
  505. 505.
    Du H, Xie X, Zhu Q et al (2015) Metallic MoO2 cocatalyst significantly enhances visible-light photocatalytic hydrogen production over MoO2/Zn0.5Cd0.5S hetero-junction. Nanoscale 7:5752–5759. doi: 10.1039/C4NR06949H CrossRefGoogle Scholar
  506. 506.
    Ma B, Liu Y, Li J et al (2016) Mo2N: An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation. Inter J Hydrogen En 41:22009–22016. doi: 10.1016/j.ijhydene.2016.08.133 CrossRefGoogle Scholar
  507. 507.
    Khan Z, Khannam M, Vinothkumar N et al (2012) Hierarchical 3D NiO–CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J Mater Chem 22:12090–12095. doi: 10.1039/C2JM31148H CrossRefGoogle Scholar
  508. 508.
    Lin CY, Lai YH, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487. doi: 10.1039/C2SC20874A CrossRefGoogle Scholar
  509. 509.
    Bi G, Wen J, Li X et al (2016) Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts. RSC Adv 6:31497–31506. doi: 10.1039/c6ra03118h CrossRefGoogle Scholar
  510. 510.
    Yuan YP, Cao SW, Yin LS et al (2013) NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Inter J Hydrogen En 38:7218–7223. doi: 10.1016/j.ijhydene.2013.03.169 CrossRefGoogle Scholar
  511. 511.
    Parida KM, Biswal N, Das DP, Martha S (2010) Visible light response photocatalytic water splitting over CdS-pillared zirconium–titanium phosphate (ZTP). Inter J Hydrogen En 35:5262–5269. doi: 10.1016/j.ijhydene.2010.03.017 CrossRefGoogle Scholar
  512. 512.
    Sun Z, Chen H, Zhang L et al (2016) Enhanced photocatalytic H2 production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. J Mater Chem A 4:13289–13295. doi: 10.1039/c6ta04696g CrossRefGoogle Scholar
  513. 513.
    Cao S, Chen Y, Wang CJ et al (2014) Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem Commun 50:10427–10429. doi: 10.1039/C4CC05026F CrossRefGoogle Scholar
  514. 514.
    Yang JS, Ham DJ, Lakshminarasimhan N et al (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A 346:149–154. doi: 10.1016/j.apcata.2008.05.020 CrossRefGoogle Scholar
  515. 515.
    Yan Z, Wu H, Han A et al (2014) Noble metal-free cobalt oxide (CoOx) nano-particles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water. Inter J Hydrogen En 39:13353–13360. doi: 10.1016/j.ijhydene.2014.04.121 CrossRefGoogle Scholar
  516. 516.
    Yuan J, Wen J, Gao Q et al (2015) Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H2-production activity. Dalton Trans 44:1680–1689. doi: 10.1039/C4DT03197K CrossRefGoogle Scholar
  517. 517.
    Cao S, Chen Y, Hou CC et al (2015) Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. J Mater Chem A 3:6096–6101. doi: 10.1039/C4TA07149B CrossRefGoogle Scholar
  518. 518.
    Yuan YJ, Ye ZJ, Lu HW et al (2016) Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal 6:532–541. doi: 10.1021/acscatal.5b02036 CrossRefGoogle Scholar
  519. 519.
    Cao S, Chen Y, Kang L et al (2015) Enhanced photocatalytic H2 evolution by immobilizing CdS nanocrystals on ultrathin Co0.85Se/RGO—PEI nanosheets. J Mater Chem A 3:18711–18717. doi: 10.1039/c5ta04910e CrossRefGoogle Scholar
  520. 520.
    Zhang L, Jiang T, Li S et al (2013) Enhancement of photocatalytic H2 evolution on Zn0.8Cd0.2S loaded with CuS as cocatalyst and its photogenerated charge transfer properties. Dalton Trans 42:12998–13003. doi: 10.1039/C3DT51256H CrossRefGoogle Scholar
  521. 521.
    Zhang L, Liu YN, Zhou M, Yan J (2013) Improving photocatalytic hydrogen evolution over CuO/Al2O3 by platinum-depositing and CuS-loading. Appl Surf Sci 282:531–537. doi: 10.1016/j.apsusc.2013.06.006 CrossRefGoogle Scholar
  522. 522.
    Wang X, Liu M, Chen Q et al (2013) Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting. Inter J Hydrogen En 38:13091–13096. doi: 10.1016/j.ijhydene.2013.03.016 CrossRefGoogle Scholar
  523. 523.
    Zhang J, Qiao SZ, Qi L, Yu J (2013) Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys 15:12088–12094. doi: 10.1039/C3CP50734C CrossRefGoogle Scholar
  524. 524.
    Li N, Zhou B, Guo P et al (2013) Fabrication of noble-metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. Inter J Hydrogen En 38:11268–11277. doi: 10.1016/j.ijhydene.2013.06.067 CrossRefGoogle Scholar
  525. 525.
    Li Y, Lin S, Peng S et al (2013) Modification of ZnS1−x−0.5 yOx(OH)y–ZnO photocatalyst with NiS for enhanced visible-light-driven hydrogen generation from seawater. Inter J. Hydrogen En 38:15976–15984. doi: 10.1016/j.ijhydene.2013.09.149 CrossRefGoogle Scholar
  526. 526.
    Zhu Y, Xu Y, Hou Y et al (2014) Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. Inter J Hydrogen En 39:11873–11879. doi: 10.1016/j.ijhydene.2014.06.025 CrossRefGoogle Scholar
  527. 527.
    Chen Y, Qin Z (2016) General applicability of nanocrystalline Ni2P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation. Catal Sci Technol 6:8212–8221. doi: 10.1039/c6cy01653g CrossRefGoogle Scholar
  528. 528.
    Yasomanee JP, Bandara J (2008) Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst. Solar En Mater Solar Cells 92:348–352. doi: 10.1016/j.solmat.2007.09.016 CrossRefGoogle Scholar
  529. 529.
    Jian JX, Ye C, Wang XZ et al (2016) Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. Energy Environ Sci 9:2083–2089. doi: 10.1039/c6ee00629a CrossRefGoogle Scholar
  530. 530.
    Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semicon-ductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 4:2355–2364. doi: 10.1021/ar300224u CrossRefGoogle Scholar
  531. 531.
    Yeh TF, Cihlar J, Chang CY et al (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16:78–84. doi: 10.1016/j.mattod.2013.03.006 CrossRefGoogle Scholar
  532. 532.
    Yang Y, Liu E, Dai H et al (2014) Photocatalytic activity of Ag-TiO2-graphene ternary nanocomposites and application in. hydrogen evolution by water splitting. Inter J Hydrogen En 39:7664–7671. doi: 10.1016/j.ijhydene.2013.09.109 CrossRefGoogle Scholar
  533. 533.
    Fang Z, Wang Y, Song J et al (2013) Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale 5:9830–9838. doi: 10.1039/c3nr03043a CrossRefGoogle Scholar
  534. 534.
    Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3:3670–3678. doi: 10.1039/C1NR10610D CrossRefGoogle Scholar
  535. 535.
    Hong Y, Shi P, Wang P, Yao W (2015) Improved photocatalytic activity of CdS/reduced graphene oxide (RGO) for H2 evolution by strengthening the connection between CdS and RGO sheets. Inter J Hydrogen En 40:7045–7051. doi: 10.1016/j.ijhydene.2015.04.005 CrossRefGoogle Scholar
  536. 536.
    Yu X, Du R, Li B et al (2016) Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl Catal B 182:504–512. doi: 10.1016/j.apcatb.2015.09.003 CrossRefGoogle Scholar
  537. 537.
    Xu H, Li X, Kang S et al (2014) Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction. Inter J Hydrogen En 39:11578–11582. doi: 10.1016/j.ijhydene.2014.05.156 CrossRefGoogle Scholar
  538. 538.
    Ding J, Yan W, Sun S et al (2014) Fabrication of graphene/CaIn2O4 composites with enhanced photocatalytic activity from water under visible light irradiation. Inter J Hydrogen En 39:119–126. doi: 10.1016/j.ijhydene.2013.10.077 CrossRefGoogle Scholar
  539. 539.
    Pan B, Wang Y, Liang Y et al (2014) Nanocomposite of BiPO4 and reduced graphene oxide as an efficient photocatalyst for hydrogen evolution. Inter J Hydrogen En 39:13527–13533. doi: 10.1016/j.ijhydene.2014.02.031 CrossRefGoogle Scholar
  540. 540.
    Sun Z, Guo J, Zhu S et al (2014) A high-performance Bi2WO6—graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 6:2186–2193. doi: 10.1039/c3nr05249d CrossRefGoogle Scholar
  541. 541.
    Hong Z, Li X, Kang S et al (2014) Enhanced photocatalytic activity and stability of the reduced graphene oxide loaded potassium niobate microspheres for hydrogen production from water reduction. Inter J Hydrogen En 39:12515–12523. doi: 10.1016/j.ijhydene.2014.06.075 CrossRefGoogle Scholar
  542. 542.
    Alexander BD, Kulesza PJ, Rutkowska I et al (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303. doi: 10.1039/B718644D CrossRefGoogle Scholar
  543. 543.
    Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534–1539. doi: 10.1246/cl.2004.1534 CrossRefGoogle Scholar
  544. 544.
    Sayama K, Mukasa K, Abe R et al (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobiol A 148:71–77. doi: 10.1016/S1010-6030(02)00070-9 CrossRefGoogle Scholar
  545. 545.
    Sayama K, Mukasa K, Abe R et al (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an \( {{{\text{IO}}_{3}^{ - } } \mathord{\left/ {\vphantom {{{\text{IO}}_{3}^{ - } } {{\text{I}}^{ - } }}} \right. \kern-0pt} {{\text{I}}^{ - } }} \) shuttle redox mediator under visible light irradiation. Chem. Commun 2416–2417. doi: 10.1039/B107673F
  546. 546.
    Schürch D, Currao A, Sarkar S et al (2002) The silver chloride photoanode in photoelectro–chemical water splitting. J Phys Chem B 106:12764–12775. doi: 10.1021/jp0265081 CrossRefGoogle Scholar
  547. 547.
    Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator \( {{{\text{IO}}_{3}^{ - } } \mathord{\left/ {\vphantom {{{\text{IO}}_{3}^{ - } } {{\text{I}}^{ - } }}} \right. \kern-0pt} {{\text{I}}^{ - } }} \). J Phys Chem B 109:16052–16061. doi: 10.1021/jp052848l
  548. 548.
    Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light by TaON and WO3 with an \( {{{\text{IO}}_{3}^{ - } } \mathord{\left/ {\vphantom {{{\text{IO}}_{3}^{ - } } {{\text{I}}^{ - } }}} \right. \kern-0pt} {{\text{I}}^{ - } }} \) shuttle redox mediator. Chem Commun 3829–3831. doi: 10.1039/B505646B
  549. 549.
    Higashi M, Abe R, Takata T, Domen K (2009) Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A = Ca, Sr, Ba) and WO3 in a \( {{{\text{IO}}_{3}^{ - } } \mathord{\left/ {\vphantom {{{\text{IO}}_{3}^{ - } } {{\text{I}}^{ - } }}} \right. \kern-0pt} {{\text{I}}^{ - } }} \) Shuttle Redox Mediated System. Chem Mater 21:1543–1549. doi: 10.1021/cm803145n
  550. 550.
    Higashi M, Abe R, Ishikawa A et al (2008) Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem Lett 37:138–139CrossRefGoogle Scholar
  551. 551.
    Abe R, Shinmei K, Koumura N et al (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc 135:16872–16884. doi: 10.1021/ja4048637 CrossRefGoogle Scholar
  552. 552.
    Jia Q, Iwase A, Kudo A (2014) BiVO4–Ru/SrTiO3: Rh composite Z-scheme photo-catalyst for solar water splitting. Chem Sci 5:1513–1519. doi: 10.1039/C3SC52810C CrossRefGoogle Scholar
  553. 553.
    Maeda K, Lu D, Domen K (2013) Solar-driven Z-scheme water splitting using modified BaZrO3–BaTaO2N solid solutions as photocatalysts. ACS Catal 3:1026–1033. doi: 10.1021/cs400156m CrossRefGoogle Scholar
  554. 554.
    Kato H, Hori M, Konta R et al (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33:1348–1349. doi: 10.1246/cl.2004.1348 CrossRefGoogle Scholar
  555. 555.
    Kato H, Sasaki Y, Iwase A, Kudo A (2007) Role of iron ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Bull Chem Soc Jpn 80:2457–2464. doi: 10.1246/bcsj.80.2457 CrossRefGoogle Scholar
  556. 556.
    Bae SW, Ji SM, Hong SJ et al (2009) Photocatalytic overall water splitting with dual-bed system under visible light irradiation. Inter J Hydrogen En 34:3243–3249. doi: 10.1016/j.ijhydene.2009.02.022 CrossRefGoogle Scholar
  557. 557.
    Pan Z, Hisatomi T, Wang Q et al (2016) Photocatalyst sheets composed of particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-scheme water splitting under visible light. ACS Catal 6:7188–7196. doi: 10.1021/acscatal.6b01561 CrossRefGoogle Scholar
  558. 558.
    Iwase A, Ng YH, Ishiguro Y et al (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057. doi: 10.1021/ja203296z CrossRefGoogle Scholar
  559. 559.
    Paulose M, Mor GK, Varghese OK et al (2006) Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol A 178:8–15. doi: 10.1016/j.jphotochem.2005.06.013 CrossRefGoogle Scholar
  560. 560.
    Khan MA, Akhtar MS, Woo SI, Yang OB (2008) Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun 10:1–5. doi: 10.1016/j.catcom.2008.01.018 CrossRefGoogle Scholar
  561. 561.
    Zou Z, Ye J, Arakawa H (2002) Surface characterization of nanoparticles of NiOx/In0.9Ni0.1TaO4: effects on photocatalytic activity. J Phys Chem B 106:13098–13101. doi: 10.1021/jp0216225 CrossRefGoogle Scholar
  562. 562.
    Jang JS, Kim HG, Reddy VR et al (2005) Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal 231:213–222. doi: 10.1016/j.jcat.2005.01.026 CrossRefGoogle Scholar
  563. 563.
    Wu G, Chen A (2008) Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J Photochem Photobiol A 195:47–53. doi: 10.1016/j.jphotochem.2007.09.005 CrossRefGoogle Scholar
  564. 564.
    Kitano M, Iyatani K, Tsujimaru K et al (2008) The effect of chemical etching by HF solution on the photocatalytic activity of visible light-responsive TiO2 thin films for solar water splitting. Topics Catal 49:24–31. doi: 10.1007/s11244-008-9064-5 CrossRefGoogle Scholar
  565. 565.
    Maeda K, Takata T, Hara M et al (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287. doi: 10.1021/ja0518777 CrossRefGoogle Scholar
  566. 566.
    Liu H, Yuan J, Shangguang W, Teraoka Y (2008) Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting. J Phys Chem C 112:8521–8523. doi: 10.1021/jp802537u CrossRefGoogle Scholar
  567. 567.
    Sayama K, Nomura A, Arai T, Sugita T et al (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B 110:11352–11360. doi: 10.1021/jp057539+ CrossRefGoogle Scholar
  568. 568.
    Bornoz P, Abdi FF, Tilley SD et al (2014) A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959–16966. doi: 10.1021/jp500441h CrossRefGoogle Scholar
  569. 569.
    Saremi-Yarahmadi S, Upul Wijayantha KG, Tahir AA, Vaidhyanathan B (2009) Nanostructured α-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J Phys Chem C 113:4768–4778. doi: 10.1021/jp808453z CrossRefGoogle Scholar
  570. 570.
    Saremi-Yarahmadi S, Tahir AA, Vaidhyanathan B, Upul Wijayantha KG (2009) Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater Lett 63:523–526. doi: 10.1016/j.matlet.2008.11.011 CrossRefGoogle Scholar
  571. 571.
    Youngblood WJ, Lee SHA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927. doi: 10.1021/ja809108y CrossRefGoogle Scholar
  572. 572.
    Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Inter J Hydrogen En 28:663–669. doi: 10.1016/S0360-3199(02)00159-3 CrossRefGoogle Scholar
  573. 573.
    Oshikiri M, Boero M, Ye J et al (2002) Electronic structures of promising photocatalysts InMO4 (M = V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J Chem Phys 117:7313–7318CrossRefGoogle Scholar
  574. 574.
    Zou Z, Ye J, Arakawa H (2001) Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation. Mater Res Bull 36:1185–1193. doi: 10.1016/S0025-5408(01)00607-9 CrossRefGoogle Scholar
  575. 575.
    Xu J, Pan C, Takata T, Domen K (2015) Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 51:7191–7194. doi: 10.1039/C5CC01728A CrossRefGoogle Scholar
  576. 576.
    Li Y, Jiang S, Xiao J, Li Y (2014) Photocatalytic overall water splitting under visible light over an In–Ni–Ta–O–N solid solution without an additional cocatalyst. Inter J Hydrogen En 39:731–735. doi: 10.1016/j.ijhydene.2013.10.092 CrossRefGoogle Scholar
  577. 577.
    Liu H, Yuan J, Jiang Z et al (2011) Novel photocatalyst of V-based solid solutions for overall water splitting. J Mater Chem 21:16535–16543. doi: 10.1039/C1JM11809A CrossRefGoogle Scholar
  578. 578.
    Guo DZ, Zhang GM, Zhang ZX et al (2006) Visible-light-induced water-splitting in channels of carbon nanotubes. J Phys Chem B 110:1571–1575. doi: 10.1021/jp055929q CrossRefGoogle Scholar
  579. 579.
    Maeda K, Wang X, Nishihara Y et al (2009) photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C 113:4940–4947. doi: 10.1021/jp809119m CrossRefGoogle Scholar
  580. 580.
    Zhao G, Huang X, Fina F et al (2015) Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. Catal Sci Technol 5:3416–3422. doi: 10.1039/C5CY00379B CrossRefGoogle Scholar
  581. 581.
    Wu X, Zhao J, Guo S et al (2016) Carbon dot and BiVO4 quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale 8:17314–17321. doi: 10.1039/c6nr05864g CrossRefGoogle Scholar
  582. 582.
    Haussener S, Hu S, Xiang C, Weber AZ, Lewis NS (2013) Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:3605–3618. doi: 10.1039/C3EE41302K CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Organic Photovoltaics and ElectrochemistryL.V. Pysarzhevsky Institute of Physical ChemistryKievUkraine

Personalised recommendations