Advertisement

Introduction to Radiogenomics

  • Vassilios Raptopoulos
  • Leo Tsai
Chapter

Abstract

Gene expression profiling of human tissues produces a better understanding of normal cellular pathways and pathological conditions at a biomolecular level. In oncology, this has led to better understanding of tumor genesis and gene expression signatures, involving anywhere from a few dozens to hundreds of genes. This has in turn improved classification and subclassification of tumors and prediction of treatment response [1]. In this respect, gene expression profiling is an attempt to organize cancer into molecular subtypes [2]. In clinical practice, imaging is used to survey high-risk patients identified as such by their genotype as, for example, in patients with BRCA1 and BRCA2 mutations who are at high risk for developing breast cancer. Radiogenomics correlates imaging characteristics of disease (image-phenotype or “radio”-phenotype) with genome-related characteristics (genomics) such as gene expression patterns and gene mutations [1, 3].

References

  1. 1.
    Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241CrossRefGoogle Scholar
  2. 2.
    Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014a) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273(2):365–372CrossRefGoogle Scholar
  3. 3.
    Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics--guiding principles technical considerations. Radiology 270(2):320–325CrossRefGoogle Scholar
  4. 4.
    Jamshidi N, Jonasch E, Zapala M et al (2015) The radiogenomic risk score: construction of a prognostic quantitative, noninvasive image-based molecular assay for renal cell carcinoma. Radiology 277(1):114–123CrossRefGoogle Scholar
  5. 5.
    Sonis ST (2015) Genomics, personalized medicine, and supportive cancer care. Am Soc Clin Oncol Educ Book:9–16CrossRefGoogle Scholar
  6. 6.
    Rosenstein BS, West CM, Bentzen SM et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89(4):709–713CrossRefGoogle Scholar
  7. 7.
    West C, Rosenstein BS (2010) Establishment of a radiogenomics consortium. Radiother Oncol 94(1):117–118CrossRefGoogle Scholar
  8. 8.
    Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537CrossRefGoogle Scholar
  9. 9.
    Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25(6):675–680CrossRefGoogle Scholar
  10. 10.
    Diehn M, Nardini C, Wang DS et al (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A 105(13):5213–5218CrossRefGoogle Scholar
  11. 11.
    Thrall JH (2015) Moreton lecture: imaging in the age of precision medicine. J Am Coll Radiol 12(10):1106–1111CrossRefGoogle Scholar
  12. 12.
    Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24(20):3245–3251. ReviewCrossRefGoogle Scholar
  13. 13.
    Suzuki C, Torkzad MR, Jacobsson H (2010) Interobserver and intraobserver variability in the response evaluation of cancer therapy according to RECIST and WHO-criteria. Acta Oncol 49(4):509–514CrossRefGoogle Scholar
  14. 14.
    Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15CrossRefGoogle Scholar
  15. 15.
    Thews O, Nowak M, Sauvant C et al (2011) Hypoxia-induced extracellular acidosis increases p-glycoprotein activity and chemoresistance in tumors in vivo via p38 signaling pathway. Adv Exp Med Biol 701:115–122CrossRefGoogle Scholar
  16. 16.
    Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Eur Radiol 22(4):796–802CrossRefGoogle Scholar
  17. 17.
    Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446CrossRefGoogle Scholar
  18. 18.
    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621CrossRefGoogle Scholar
  19. 19.
    Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12(8):862–866CrossRefGoogle Scholar
  20. 20.
    CIA (b): Cancer Imaging Archive. The VASARI Research Project. https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
  21. 21.
    ACR BIRADS® Atlas – American College of Radiology. https://www.acr.org/Quality-Safety/Resources/BIRADS
  22. 22.
    REBRANDT: Visually Accessible REMBRANDT [Repository for Molecular Brain Neoplasia Data] Images, Available at: http://cabig.cancer.gov/action/collaborations/vasari
  23. 23.
    Langlotz CP (2006) RadLex: a new method for indexing online educational materials. Radiographics 26(6):1595–1597CrossRefGoogle Scholar
  24. 24.
    Rubin DL (2008) Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging 21(4):355–362CrossRefGoogle Scholar
  25. 25.
    Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569CrossRefGoogle Scholar
  26. 26.
    Mazurowski MA, Desjardins A, Malof JM (2013) Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro Oncol 15(10):1389–1394CrossRefGoogle Scholar
  27. 27.
    Mazurowski MA, Zhang J, Peters KB, Hobbs H (2014b) Computer-extracted MR imaging features are associated with survival in glioblastoma patients. J Neurooncol 120(3):483–488CrossRefGoogle Scholar
  28. 28.
    CIA (a): Cancer Imaging Archive. http://cancerimagingarchive.net/
  29. 29.
    NCI: National Cancer Institute. The cancer genome atlas. https://cancergenome.nih.gov/
  30. 30.
    Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471CrossRefGoogle Scholar
  31. 31.
    Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6(3):447–457CrossRefGoogle Scholar
  32. 32.
    Zinn PO, Mahajan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6(10):e25451CrossRefGoogle Scholar
  33. 33.
    Jamshidi N, Diehn M, Bredel M, Kuo MD (2014) Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology 270(1):1–2CrossRefGoogle Scholar
  34. 34.
    Gevaert O, Mitchell LA, Achrol AS et al (2014) Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1):168–174CrossRefGoogle Scholar
  35. 35.
    Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 199(3):654–663CrossRefGoogle Scholar
  36. 36.
    Ashraf AB, Daye D, Gavenonis S, Mies C, Feldman M, Rosen M, Kontos D (2014) Identification of intrinsic imaging phenotypes for breast cancer tumors: preliminary associations with gene expression profiles. Radiology 272(2):374–384CrossRefGoogle Scholar
  37. 37.
    Grimm LJ, Zhang J, Mazurowski MA (2015) Computational approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging 42(4):902–907CrossRefGoogle Scholar
  38. 38.
    Gevaert O, Xu J, Hoang CD, Leung AN et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology 264(2):387–396CrossRefGoogle Scholar
  39. 39.
    Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X (2007) Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 18(7):821–831CrossRefGoogle Scholar
  40. 40.
    Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218CrossRefGoogle Scholar
  41. 41.
    O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations