Applications: Boundary Layers

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans


The following two experiments have been performed in the second half of the 1990s’ in the DLR low turbulence wind tunnel (TUG), which is of an Eiffel type. Screens in the settling chamber and a high contraction ratio of 15:1 lead to a low turbulence level in the test section (cross section \(0.3 \times 1.5\,\text {m}^2\)). The basic turbulence level in the test section of the TUG of \(Tu= 0.06\%\) (measured by means of a hot wire) allows the investigation of acoustically exited transition from laminar to turbulent flow as well as turbulent boundary layers that develop in the relatively long test section. The flow was seeded in the settling chamber upstream of the screens used to reduce the turbulence of the wind tunnel flow.


  1. 1.
    Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, 4th edn. Wiley, New York (2012). DOI 10.1002/9781118032428. URL
  2. 2.
    Benedict, L.H., Gould, R.D.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22, 129–136 (1996). DOI 10.1007/s003480050030. URL
  3. 3.
    Bross, M., Kähler, C.J., (2016) Time-Resolved 3D-PTV Analysis of Near Wall Reverse Flow Events in APG Turbulent Boundary Layers. 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, July 4–7, Lisbon, PortugalGoogle Scholar
  4. 4.
    Bross, M., Kähler, C.J., (2017) Three Dimensional Near-Wall Events in an Adverse Pressure Gradient Boundary Layer. 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), July 6–9, Chicago, USAGoogle Scholar
  5. 5.
    Buchmann, N.A., Kücükosman, Y.C., Ehrenfried, K., Kähler, C.J.: Wall pressure signature in compressible turbulent boundary layers. In: Stanislas, M., Jimenez, J., Marusic, I. (eds.) Progress in Wall Turbulence 2, ERCOFTAC Series, vol. 23, pp. 93–102. Spinger, Cham (2015). DOI 10.1007/978-3-319-20388-1_8. URL
  6. 6.
    Chauhan, K., Philip, J., de Silva, C.M., Hutchins, N., Marusic, I.: The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119–151 (2014). DOI 10.1017/jfm.2013.641. URL
  7. 7.
    Cierpka, C., Scharnowski, S., Kähler, C.J.: Parallax correction for precise near-wall flow investigations using particle imaging. Appl. Opt. 52(12), 2923–2931 (2013). DOI 10.1364/AO.52.002923. URL
  8. 8.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL
  9. 9.
    Dennis, D.J.C., Nickels, T.B.: Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2 Long structures. J. Fluid Mech. 673, 218–244 (2011). DOI 10.1017/S0022112010006336. URL
  10. 10.
    Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39(8), 1517–1531 (2001). DOI 10.2514/2.1476. URL
  11. 11.
    Elsinga, G.E., van Oudheusden, B.W., Scarano, F.: Evaluation of aero-optical distortion effects in PIV. Exp. Fluids 39(2), 246–256 (2005). DOI 10.1007/s00348-005-1002-8. URL
  12. 12.
    Fernholz, H.H., Finleyt, P.J.: The incompressible zero-pressure gradient turbulent boundary layer: an assessment of data. Prog. Aerosp. Sci. 32, 245–311 (1996). DOI 10.1016/0376-0421(95)00007-0. URL
  13. 13.
    Fuchs, T; Hain, R; Kähler, C J. Double-frame 3D-PTV using a tomographic predictor. Experiments in Fluids 57(11) (November, 2016). DOI 10.1007/s00348-016-2247-0. URL
  14. 14.
    Fuchs, T., Hain, R., Kähler, C.J.: Non-iterative double-frame 2D/3D particle tracking velocimetry. Experiments in Fluids 58(9), 119 (August, 2017).
  15. 15.
    Hain, R., Scharnowski, S., Reuther, N., Kähler, C.J., Schröder, A., Geisler, R., Agocs, J., Röse, A., Novara, M., Stanislas, M., Cuvier, C., Foucaut, J.M., Srinath, S., Laval, J., Willert, C., Klinner, J., Soria, J., Amili, O., Atkinson, C.: Coherent large scale structures in adverse pressure gradient turbulent boundary layers. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 04-07 July (2016). URL
  16. 16.
    Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007). DOI 10.1017/S0022112006003946. URL
  17. 17.
    Kähler, C.J.: Ortsaufgelöste Geschwindigkeitsmessungen in einer turbulenten Grenzschicht. Technical report, DLR, Göttingen, Germany (1997). DLR-FB-1997-32Google Scholar
  18. 18.
    Kähler, C.J.: High resolution measurements by long-range micro-PIV. VKI Lecture Series: Recent advances in Particle Image Velocimetry (2009). URL
  19. 19.
    Kähler, C.J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 33(6), 736–742 (2002). DOI 10.1007/s00348-002-0492-x. URL
  20. 20.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL
  21. 21.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL
  22. 22.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 796, 257–284 (2016). DOI 10.1017/jfm.2016.250. URL
  23. 23.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL
  24. 24.
    Knopp, T., Buchmann, N.A., Schanz, D., Eisfeld, B., Cierpka, C., Hain, R., Schröder, A., Kähler, C.J.: Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J. Turbul. 16(3), 250–272 (2015). DOI 10.1080/14685248.2014.943906. URL
  25. 25.
    Knopp, T., Schanz, D., Schröder, A., Dumitra, M., Cierpka, C., Hain, R., Kähler, C.J.: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at \(Re_{\theta } = 10000\). Flow Turbul. Combust. 92, 451–471 (2014). DOI 10.1007/s10494-013-9479-3. URL
  26. 26.
    Miller, J.D., Jiang, N., Slipchenko, M.N., Mance, J.G., Meyer, T.R., Roy, S., Gord, J.R.: Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry. Exp. Fluids 57(12), 192 (2016). DOI 10.1007/s00348-016-2279-5. URL
  27. 27.
    Papageorge, M., Sutton, J.A.: Statistical processing and convergence of finite-record-length time-series measurements from turbulent flows. Exp. Fluids 57(8), 1–22 (2016). DOI 10.1007/s00348-016-2211-z. URL
  28. 28.
    Samimy, M., Lele, S.K.: Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3(8), 1915–1923 (1991). DOI 10.1063/1.857921. URL
  29. 29.
    Scarano, F., van Oudheusden, B.W.: Planar velocity measurements of a two-dimensional compressible wake. Exp. Fluids 34(3), 430–441 (2003). DOI 10.1007/s00348-002-0581-x. URL
  30. 30.
    Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to Re\(_\theta =2500\) studied through simulation and experiment. Phys. Fluids 21(5), 051,702 (2009). DOI 10.1063/1.3139294. URL
  31. 31.
    Schrijer, F.F.J., Scarano, F., van Oudheusden, B.W.: Application of PIV in a Mach 7 double-ramp flow. Exp. Fluids 41(2), 353–363 (2006). DOI 10.1007/s00348-006-0140-y. URL
  32. 32.
    Sillero, J.A., Jiménez, J., Moser, R.D.: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+ \approx \) 2000. Phys. Fluids 25(10), 105,102–17 (2013). DOI 10.1063/1.4823831. URL
  33. 33.
    Urban, W.D., Mungal, M.G.: Planar velocity measurements in compressible mixing layers. J. Fluid Mech. 431, 189–222 (2001). DOI 10.1017/S0022112000003177. URL
  34. 34.
    Wiegel, M., Fischer, M.: Proper orthogonal decomposition applied to PIV data for the oblique transition in a Blasius boundary layer. In: Cha, S.S., Trolinger, J.D. (eds.) Optical Techniques in Fluid, Thermal, and Combustion Flow, San Diego, CA, United States, vol. 2546, pp. 87–97 (1995). DOI 10.1117/12.221512. URL
  35. 35.
    Willert, C.E.: High-speed particle image velocimetry for the efficient measurement of turbulence statistics. Exp. Fluids 56(1), 17 (2015). DOI 10.1007/s00348-014-1892-4. URL

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations